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ABSTRACT
A large number of context-inference applications run
on off-the-shelf smart-phones and infer context from
the data acquired by means of the sensors embedded in
these devices. The use of efficient and effective sampling
technique is of key importance for these applications.
Aggressive sampling can ensure a more fine-grained and
accurate reconstruction of context information but, at
the same time, continuous querying of sensor data might
lead to rapid battery depletion.

In this paper, we present an adaptive sensor sampling
methodology which relies on dynamic selection of sam-
pling functions depending on history of context events.
We also report on the experimental evaluation of a set
of functions that control the rate at which the data are
sensed from the Bluetooth device, accelerometer, and
microphone sensors and we show that a dynamic adap-
tation mechanism provides a better trade-offs compared
to simpler function based rate control methods. Fur-
thermore, we show that the suitability of these mecha-
nisms varies for each of the sensors, and the accuracy
and energy consumption values stabilize after reaching
a certain level.

INTRODUCTION
The development of mobile context-aware applications
has always been limited by energy, processing, and mem-
ory constraints. With the advent of high-end phones
like Google Nexus One, and HDC HD2, the processing
and memory limitations are overcome to a great extent -
indeed, these mobile phones are equipped with a 1 GHz
processor and 512 MB RAM. However, energy is still a
scarce resource and should be expended judiciously by
the applications. For example, it is reported in [7] that
the battery charge of a Nokia N95 smart phone lasts less
than 5 hours when sensing data from GPS, accelerom-
eter, and microphone sensors using a predefined static
(and aggressive) sampling rate. In other words, context-
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aware applications are by definition resource intensive,
since they continuously query data from sensors. There
is a need for adaptive mechanisms for querying the sen-
sor data in an energy efficient way by considering the
application requirements in terms of energy and accu-
racy, and provide the sensor data to these applications.

As an initial step towards a larger framework, in this
paper, we present a design methodology to evaluate
and study the energy-accuracy trade-offs of rate control
mechanisms for querying sensor data in continuous sens-
ing mobile systems. These aspects are in some respects
orthogonal to the problem of intelligent mechanisms for
uploading data to a back-end [3], even if the sampling
rate can also be tuned according to the corresponding
transmission rate. However, some applications perform
local computation on the phones and only then trans-
mit the information to a remote server via GPRS or
WiFi.

We present some preliminary results by evaluating a
set of functions that control the rate at which the data
should be sensed from the Bluetooth, accelerometer,
and microphone sensors for a predefined set of classi-
fiers used in various mobile context-aware applications.
In this work, we focus on context events that are rep-
resented by a stream of states, such as streams of user
activities, like walking, sitting, in conversation, and so
on. We do not consider context information that is mea-
sured continuously in a given range, such as tempera-
ture. The contributions of this work can be summarized
as follows:

• We propose a methodology for studying the energy-
accuracy trade-offs for querying data in continuous
sensing applications using a set of sampling functions
selected dynamically according to the stream of con-
text events. In particular, we discuss the choice of
parameters of a dynamic adaptation algorithm that
switches among a set of sampling functions based on
the analysis of the stream of past events.

• We show experimentally that a dynamic adaptation
mechanism provides a better trade-offs compared to
simpler function based rate control methods. Fur-
thermore, we show that the suitability of these mech-
anisms varies for each of the sensors, and the accuracy
and energy consumption values stabilize after reach-
ing a certain level.



Table 1. Advance and back-off functions
Type Back-off function Advance function

Linear k × x x/k

Quadratic x2 √
x

Exponential ex loge x

Minimum N/A minSamplingInterval

Maximum maxSamplingInterval N/A

ADAPTIVE SAMPLING BASED ON DYNAMIC FUNCTIONS
In order to address the energy-accuracy trade-offs of
context-aware applications, we propose a methodology
that uses a set of functions to adjust the sampling rate
of sensors based on the current observed data. The
sensor data are either queried periodically or aperiod-
ically according to the sampling function used. We
define two parameters viz., minSamplingInterval and
maxSamplingInterval. The former is the minimum sleep
interval between two successive sensor readings and the
later is the maximum sleep interval. If the sensor sam-
pling interval for a sensor is always set to minSampling-
Interval, then the accuracy of classifiers will be high
(due to aggressive data sampling). However, the energy
expended will also be considerable. On the other hand,
if the sampling interval is always set to maxSampling-
Interval, then the energy consumption is minimized but
the accuracy decreases.

We classify context events into two classes. An un-
missable event is an event of interest observed in the
environment that should not be missed by the sensor.
A missable event indicates that no interesting exter-
nal phenomenon has happened and the corresponding
sensor can sleep during this time. If there are no “in-
teresting” events observed (i.e., missable events), then
the sampling interval increases from its current value
to maxSamplingInterval based on a back-off function.
Similarly, if the event is classified as unmissable, then
the sampling interval decreases from its current value
to minSamplingInterval based on an advance function.
The classification of an event as missable or unmissable
is application dependent. The choice of the advance and
back-off functions and of the minSamplingInterval and
maxSamplingInterval parameters play a crucial rule in
the energy-accuracy trade-offs for the various context
inference components. Examples of back-off and ad-
vance functions (also used in the evaluation section) are
given in Table 1.

The functions take into consideration the previous state
and not the full or partial history of the context events.
Moreover, they can be considered static (no dynamic
adaptation). One further step is to dynamically switch
these functions based on past observations of sensor
data. For our evaluation, we adopt the adaptive tech-
nique showed in Algorithm 1. The idea is to use the
functions according to the consistency of the observed
sensor data, i.e., the function changes from least to
most “aggressive” based on the number of consecutive
sampling of the same state. By adopting this mech-

Algorithm 1 Dynamic adaptation algorithm
sleep(sleepInterval)
interestingEvent = senseAndClassify(sensorId)
if (interestingEvent == TRUE) then

uninterestingSequence = 0
sequence = interestingSequence++

else
interestingSequence = 0
sequence = uninterestingSequence++

end if
if (sequence < linearThreshold) then

function = linear
else if (sequence < quadraticThreshold) then

function = quadratic
else

function = exponential
end if
sleepInterval = update(function, sleepInterval, interestingEvent)
if (sleepInterval ≥ maxSamplingInterval) then

sleepInterval = maxSamplingInterval
else if (sleepInterval ≤ minSamplingInterval) then

sleepInterval = minSamplingInterval
end if

anism, small state changes do not have a large effect
on the sampling interval. More refined techniques can
be implemented. However, since the goal of this work
is primarily to present a methodology for tuning the
parameters of adaptive sampling functions by analyz-
ing energy-accuracy trade-offs, we limit our discussion,
methodological analysis, and performance evaluation to
this simple mechanism.

EVALUATION
In this section we describe the dataset used for the eval-
uation and then present the results of the performance
evaluation of the proposed techniques considering Blue-
tooth, accelerometer, and microphone sensors.

Dataset
Trace files with ground-truth information for accelerom-
eter, Bluetooth, and microphone sensors were collected
from 10 users for 24 hours using the EmotionSense plat-
form [5] running on Nokia 6210 phones. In order to
extract the microphone sensor traces, audio samples
of 5 seconds length were recorded continuously with a
sleep period of 1 second between consecutive record-
ings. Co-location data for the Bluetooth sensor traces
were queried continuously with a sleep duration of 3
seconds between successive queries. The accelerometer
sensor was sampled continuously for movement infor-
mation with an interval of 1 second.

As discussed above, the events generated from the data
of each sensor can be of two types, viz., “unmissable”
and “missable” events. In the case of the microphone
sensor, an unmissable event corresponds to some au-
dible voice data being heard in the environment and
a missable event corresponds to silence. These events
are generated based on a GMM classifier [1] capable
of classifying whether an audio trace contains any con-
versation. For the Bluetooth sensor traces, an unmiss-
able event corresponds to a change in the number of co-
located users, whereas a missable event indicates that
there is no change. We assume reliable Bluetooth read-
ings, however, techniques to identify outliers can also
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Figure 1. Percentage of missed
events vs linear threshold for Blue-
tooth sensor.
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Figure 2. Energy consumption vs
linear threshold for Bluetooth sen-
sor.
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Figure 3. Percentage of missed
events vs minimum sampling inter-
val for Bluetooth sensor.
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Figure 4. Energy consumption vs
minimum sampling interval for Blue-
tooth sensor.
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Figure 5. Percentage of missed
events vs maximum sampling inter-
val for Bluetooth sensor.
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Figure 6. Energy consumption
vs maximum sampling interval for
Bluetooth sensor.

be applied. In the case of the accelerometer sensor, the
unmissable event corresponds to movement of a user
and a missable event indicates that the user is station-
ary. Although both of these events are unmissable, it is
sufficient to detect just one of them since we have just
two possible events, so we choose “user moving event”
as unmissable. In future, we would like to consider un-
missable events as transition events, i.e., movement to
stationary and vice versa, as it is more efficient. The ac-
curacy is measured in terms of the percentage of missed
events. An event is said to be missed when there is an
unmissable event recorded in the trace file while the
sensor is not actively queried. The energy consumption
is measured using the Nokia Energy Profiler.

Results
In order to find optimal values of linearThreshold and
quadraticThreshold for the Bluetooth sensor, we varied
one of them by fixing the other. Figures 1 and 2 show
the accuracy and energy consumption by varying the
linearThreshold value. From these results, we selected a
value of 3 for linearThreshold as the benefits in terms of
accuracy after that are not high. We present all the re-
sults for Bluetooth sensor, but due to space constraints,
we only show the variation of minimum sampling in-
terval for accelerometer and microphone sensors. Note
that the format of the legend in these plots is <advance
function> <backoff function>. We can observe that
all these curves stabilize at certain values. Therefore,
high values of these intervals do not necessarily imply
low accuracy and high savings in energy. It should suf-

fice to use the values after which there are no consider-
able improvements in terms of performance. Dynamic
adaption function is best in terms of accuracy compared
to the other functions for most of the cases; however, it
is not always the worst in terms of energy consumption
(see Figure 8). With respect to the Bluetooth sensor
(Figures 3 and 4), for a minSamplingInterval value of
5, the best performing function (dynamic adaptation)
is more accurate than the worst (exponential linear) by
a factor of 5, whereas, in terms of energy consumption
the gain ratio is 1.5. So, in this case, the gain in ac-
curacy is much higher than the compromise in terms
of energy consumption using the dynamic adaptation
method. Figures 5 and 6 show the maxSamplingInter-
val variation for Bluetooth sensor.

With respect to the accelerometer sensor (Figures 7 and
8), the difference between the functions in terms of en-
ergy consumption is negligible, whereas the difference
with respect to accuracy is not. For a minSamplingIn-
terval value of 3, the best performing function is 20%
more accurate than the worst, whereas the difference
in terms of energy consumption is only 1%. More-
over, for the microphone sensor (Figures 9 and 10),
we can observe that for a minSamplingInterval value
of 25, the accuracy of linear exponential is only 3%
less than that of dynamic adaption method, however,
the energy saving of the former is 11% better than the
latter. This is due to high energy consumption for pro-
cessing audio data locally on the phone. Therefore,
linear exponential is a better option for this sensor.
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Figure 7. Percentage of missed events vs minimum
sampling interval for accelerometer sensor.
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Figure 8. Energy consumption vs minimum sampling
interval for accelerometer sensor.
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Figure 9. Percentage of missed events vs minimum
sampling interval for microphone sensor.
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Figure 10. Energy consumption vs minimum sampling
interval for microphone sensor.

RELATED WORK
Energy efficiency is a key issue in mobile sensing sys-
tem design, and for this reason, it has been investigated
in many recent works. In this section, we present a
brief selection of relevant projects. The EEMSS sys-
tem [7] is probably the most relevant work: this plat-
form uses a hierarchical sensor management strategy to
recognize user states as well as to detect state transi-
tions. SeeMon [2] is a context monitoring service for
mobile devices based on several sensors, and it achieves
energy efficiency by performing context recognition only
when the there is a change in the context. In [3] the au-
thors show that continuous sensing is a viable option for
mobile phones by adopting efficient data uploading (to
a remote server) strategies. In [4] the authors address
the problem of energy-delay trade-offs in smart phone
applications. Finally, several energy saving schemes for
mobile devices are discussed and compared in [6].

CONCLUSIONS
In this paper, we presented a design methodology to
evaluate energy-accuracy trade-offs for querying sensor
data in continuous sensing mobile systems, and also
presented its evaluation with respect to a set of func-
tions that control the rate at which the data should be
sensed from the Bluetooth, accelerometer, and micro-
phone sensors. We also presented a dynamic algorithm
that switches among these functions based on the con-
text history. The results show that the dynamic adap-
tation scheme is better in terms of accuracy, however,
the suitability of these functions varies for each of the
sensors.

We recently built a system [5] for sensing and analyz-
ing user speech patterns and human emotions. We plan
to integrate the current function based sampling into
that system. Our future research agenda includes the
design of techniques for intelligent sampling and up-
loading to back-end servers for further processing, i.e.,
mechanisms that are able to optimize the sampling and
uploading processes at the same time.
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