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Identifying causal structure is central to many fields

ranging from strategic decision making to biology

and economics. In this work, we propose Causal

Discovery Upper Confidence Bound for Trees (CD-

UCT), a model-based reinforcement learning (RL)

method for causal discovery based on tree search that

builds directed acyclic graphs (DAGs) incrementally.

We also formalize and prove the correctness of an

efficient algorithm for excluding edges that would

introduce cycles, which enables deeper discrete

search and sampling. The proposed method can be

applied broadly to causal Bayesian networks with

both discrete and continuous random variables. We

conduct a comprehensive evaluation on synthetic

and real-world datasets showing that CD-UCT

substantially outperforms the state-of-the-art model-

free RL technique that operates in DAG space and

greedy search, constituting a promising advancement

for combinatorial methods.

1. Introduction
Causal graphs are probabilistic graphical models that

represent causal dependencies between randomvariables.

They are widely used in many empirical sciences

and practical scenarios [1,2] and can enable estimating

treatment effects, intervening on variables and answering

counterfactual queries [3]. Determining causal structure

from observational data is a fundamental task that arises,

for instance, when performing randomized controlled

trials is impossible or unethical. In particular, score-based
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methods seek to find one of the optimal causal graphs with respect to a score function [4] such as

the Bayesian information criterion (BIC) [5].

Commonly, the problem is framed as determining a directed acyclic graph (DAG), which

eliminates feedback loops. This has been shown to be NP-hard [6], driving decades of research

into heuristic or exact methods.

Reinforcement learning (RL) has recently been proposed as a means of navigating this

search space, motivated by advances on other NP-hard problems. The appeal of RL for causal

discovery stems from its flexibility regarding the types of random variables, the functional

forms of the relationships between parent and child variables and the diversity of the

properties of score functions that can be accommodated. By contrast, many classic causal

discovery algorithms impose assumptions; for example, LiNGAM [7] requires continuous

random variables characterized by linear relationships and non-Gaussian noise. When the

assumptions of a method are violated, this can lead to missing and spurious edges [8]. A notable

RL method is RL-BIC [9]: a model-free, continuous approach for one-shot DAG generation.

However, its performance on real datasets and scalability on large causal graphs remains

limited.

In this article, we propose Causal Discovery Upper Confidence Bound for Trees (CD-UCT),

a practical yet rigorous RL method for causal discovery based on incremental causal graph

construction. Unlike RL-BIC, it is model-based and performs tree search in a discrete space

using a granular Markov decision process (MDP) formulation. The core intuition is that access

to this model substantially improves the quality of exploration over model-free methods. The

advantages of model-based RL have been demonstrated for solving a variety of other problems

including the construction of undirected graphs [10]. The proposed method enjoys the flexibility

of RL and is applicable across many types of Bayesian networks, data generation models and

score functions. Furthermore, it is theoretically grounded: given it is based on UCT, it converges

to the optimal action as the number of samples grows to infinity [11], akin to the properties of

Greedy Equivalence Search (GES) [12].

The valid action space of the RL agent must exclude edges that would introduce cycles. As

the depth and breadth of the tree grow, explicitly checking for cycles becomes prohibitively

expensive. To address this key challenge, we propose an incremental algorithm for efficiently

tracking cycle-inducing possible edges as the construction progresses. We prove its correctness

and empirically show that it results in a speedup of more than an order of magnitude on the

largest graphs tested compared with naïve cycle checks.

We evaluate CD-UCT on several real world and synthetic benchmarks showing consistently

better performance than the state-of-the-art solution in RL for causal discovery (namely, RL-

BIC) and Greedy Search in all settings tested. The flexibility of our method is demonstrated by

its compatibility with Bayesian networks with both discrete and continuous random variables

using a variety of score functions. We also study the impacts of the simulation budget, graph

density and dataset size on algorithm performance. Finally, we analyse the scalability of CD-

UCT, which is shown to substantially exceed that of RL-BIC by scaling to graphs with up to d= 50

nodes.

2. Background and motivation
In this section, we first review the various classes of methods that have been proposed in the

past for the causal discovery problem. Subsequently, we motivate the proposed method by

comparing and contrasting it with Greedy Search and RL-BIC, which are the two most closely

related techniques.

In doing so, we also introduce key concepts behind the Monte Carlo Tree Search (MCTS)

framework, which will later be used in the presentation of our proposed method.
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(a) Related work
Combinatorial methods: The goal of combinatorial methods is to find the discrete causal structure

that optimizes a given score function. Identifying the optimal DAG (we note that there may

be more than one) is known to be NP-hard [6]. As such, exact methods based, for example,

on dynamic programming [13] or LP formulations [14] are fairly limited in their ability to

scale. Alternatively, the problem can be solved approximately, with some such methods scaling

successfully to Bayesian networks with thousands [15] or even millions [16] of variables. Local

search methods such as Greedy Search in DAG space [17] or Markov equivalence classes [12,18]

have been widely successful. In particular, the GES method, which belongs to the latter category,

is proven to find the global optimum in the limit of infinite data. However, this guarantee does

not hold in the finite data regime.

Continuous methods: A recent line of work employs continuous optimization, relying on a

smooth characterization of acyclicity proposed by [19], which is used as a constraint in a

continuous optimization program. Other works build further in this direction by modelling

nonlinear relationships with neural networks [20,21]. Such techniques, however, are not

guaranteed to return DAGs due to the non-convexity of the objective function [22].

Order-based methods: Another important category of approaches adopts a two-step procedure.

First, a causal ordering is determined based on the data. Second, themethod seeks the best-scoring

graph that is consistent with the ordering. This can lead to a substantially smaller and regular

search space [23]; however, errors made in the first step may have a downstream impact on the

second. There are several notable approaches based on this idea [23,24], including several recent

works based on continuous optimization [25,26].

RL for causal discovery: Introduced by [9], RL-BIC is a score-based continuousmethod that relies

on the acyclicity characterization proposed by [19] in conjunctionwith RL. Since the score function

is used to provide rewards, its differentiability is not required. It features an encoder–decoder

architecture trained using the policy gradient for one-shot DAG generation. The best-scoring

graph found during training is returned as output. CORL [27] built further in this direction by

carrying out the search in the space of orderings. Its action space is formulated as the selection

of one of the nodes to add to the ordering. The method relies on an additional intermediate

reward that leverages the decomposability of the BIC. The authors showed gains in scalability

compared with RL-BIC. Lastly, RCL-OG [28] learns the posterior distribution of orderings (rather

than optimizing a single ordering), motivated by the possible unidentifiability of the true causal

graph in some settings. Results show that RCL-OG can recover the correct posterior in simplified

examples as well as match or exceed the performance of related techniques.

RL for combinatorial optimization: The present article belongs to the emerging area of RL

for combinatorial optimization [29,30]. Particularly relevant are those works that consider the

construction of graphs as an incremental decision-making problem [31–34]. Our approach is most

closely related to [10], which proposes a MCTS method for constructing spatial networks.

(b) Monte Carlo Tree Search and algorithmmotivation

(i) Search problems and shortcomings of Greedy Search

Search has been one of the most widely utilized approaches for building intelligent agents since

the dawn of AI [35, Chapters 3–4]. Search methods construct a tree in which the nodes are states

in the MDP. Child nodes correspond to the states obtained by applying a particular action to the

state at the parent node, while leaf nodes correspond to terminal states, from which no further

actions can be taken. The root of the search tree is the current state. The way in which this tree is

expanded and navigated is dictated by the particulars of the search algorithm.

Let us first discussGreedy Search. It creates, at each step, a search tree of depth equal to 1 rooted

at the current state, evaluates the objective function for each of the child nodes and picks the action
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Figure 1. Left: schematic comparison of Greedy Search and CD-UCT, which build shallow and deeper trees, respectively, to
search in DAG space. Right: we propose an incremental algorithm to exclude cycle-inducing edges. It relies on the insight that,
after adding edgeA→ B, connecting a descendant (red) ofB to an ancestor (blue) ofAwould introduce a cycle in all subsequent
timesteps. An illustration of all the algorithm steps can be found in figure 5 in the appendix.

corresponding to the best child node as the next action. The search is repeated with the child node

as the root until a terminal state is reached.

Despite its very shallow search horizon, it is commonly used in practice to good effect in a

variety of problems [36], GES [12] being a relevant example.1 The key pathology from which

Greedy Search can suffer from is the ‘horizon effect’ [37], arising due to its shallow search tree. It

may make myopic choices as it is unable to explore longer trajectories that contain sets of edges

with better scores when considered jointly. Equivalently, actions that are the best locally do not

translate to a globally optimal solution. We illustrate this in figure 1.

To see why Greedy Search may be suboptimal, consider the following example in a causal

discovery context: two sequences of candidate edges (e1, e2) and (e3, e4) decrease the BIC score by

1 and 2, respectively, when applied jointly. However, if the decreases for the first edges e1 and e3
are 0.5 and 0.1, respectively, a greedy algorithmwould not choose the second trajectory due to its

myopic horizon.

(ii) Monte Carlo Tree Search

If greedy methods have this shortcoming, why not simply go deeper? In many applications, the

branching factor and depth of the search tree make it impossible to explore all paths in the MDP.

To break the curse of dimensionality, one option is to use Monte Carlo rollouts: to estimate the

goodness of an action, run simulations from a tree node until reaching a terminal state [38,39].

MCTS is an algorithm based on this principle. It is a model-based planning technique that

addresses the inability to explore all paths in large MDPs by constructing a policy from the

current state [40, Chapter 8.11]. Furthermore, it relies on the idea that the returns obtained by

this sampling are informative for deciding the next action at the root of the search tree. We review

its basic concepts below, discussing some of the notation used in the pseudocode of algorithm 2.

We also refer the interested reader to [41] for a broader review of MCTS.

In MCTS, each node in the search tree stores several statistics such as the sum of returns and

the node visit count in addition to the state. For deciding each action, the search task is given a

computational budget expressed in terms of node expansions or wall clock time. Specifically, we

opt for the former solution and use a budget of simulations per action equal to bsims ∗ d (hence

linearly proportional to the number of nodes in the graph).

At each search step, the algorithm repeatedly executes the procedures below until the search

budget is exhausted:

1Interestingly, while Christopher Meek’s PhD thesis [18], which first proposed GES, acknowledges that Greedy Search is

somewhat simplistic and other types of search algorithms should be considered, to the best of our knowledge, the bulk of

work has concentrated on GES-like methods.
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1. Selection: The tree is traversed iteratively from the root node nroot until an expandable node

(i.e. a node containing a non-terminal state with yet-unexplored actions) is reached.

2. Expansion: From the expandable node, a new node is constructed and added to the search

tree, with the expandable node as the parent and the child corresponding to a valid action

from its associated state. This newly added node is referred to as the border node nborder. The

mechanism for selection and expansion is called tree policy (denoted TreePolıcy), and it is

typically based on the node statistics.

3. Simulation: Trajectories in theMDP are sampled from the border node until a terminal state is

reached and the return is recorded. The default policy or simulation policy (denoted SımPolıcy)

dictates the probability of each action. The simplest version, which we opt for, is to use

uniform random sampling of valid actions.We note that the intermediate states encountered

when performing this sampling are not added to the search tree.

4. Backpropagation: The return is backpropagated from the expanded node upwards to the root

of the search tree, and the statistics of each node that was selected by the tree policy are

updated.

Once the budget is exhausted, the search step is completed and the action corresponding to the

child node with the highest reward (denoted MaxChıld) is chosen as the next root node. This

process is repeated until a terminal state is encountered. GETACTION and GETSTATE, later used

in algorithm 2, are simple helper functions that extract the state and action, respectively, from the

search tree node.

The tree policy used by the algorithm trades off exploration and exploitation in order to

balance actions that are already known to lead to high returns against yet-unexplored paths

in the MDP for which the returns are still to be estimated. The exploration–exploitation trade-

off has been widely studied in the multi-armed bandit setting, which may be thought of as a

single-stateMDP.A representative method is the Upper Confidence Bound (UCB) algorithm [42],

which computes confidence intervals for each action and chooses, at each step, the action with

the largest upper bound on the reward, embodying the principle of optimism in the face of

uncertainty.

Upper Confidence Bounds for Trees (UCT) [11] is a variant of MCTS that applies the principles

behind UCB to the tree search setting. Namely, the selection decision at each node is framed as an

independent multi-armed bandit problem.At decision time, the tree policy of the algorithm selects

the child node corresponding to action a that maximizes

UCT(s, a) = r̄a + 2�UCT

√

2 lnC(s)

C(s, a)
, (2.1)

where r̄a is the mean reward observed when taking action a in state s, C(s) is the visit count for

the parent node, C(s, a) is the number of child visits and �UCT controls the level of exploration.

UCT has been shown to converge to the optimal action with probability 1 as the number

of samples grows to infinity [11], and hence features a similar guarantee to GES. However, we

note that the number of samples in this context refers to the number of MC simulations that the

algorithm is allowed to perform, and not the size n of the considered dataset.

(iii) Model-based versus model-free: why and how CD-UCT outperforms RL-BIC

Next, we provide the reader with an additional comparative analysis of the performance of CD-

UCT versus RL-BIC and, more generally, of model-based versus model-free approaches. Let us

first review the distinction between model-based and model-free methods. The former category

assumes knowledge of the MDP, while the latter requires only samples of agent–environment

interactions. To be specific, in this context, a model ℳ = (P,R) refers to knowing, or having

some estimate of, the transition and reward functions P,R. Given our MDP formulation of DAG

construction for causal discovery (§3b), in this context, we have access to the ‘true’ P and R via

their mathematical descriptions.
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Model-based methods are able to exploit knowledge of ℳ directly, whereas model-free

methods do not. Intuitively, they can determine preciselywhat the subsequent states and rewards

will be for a sequence of actions, without needing to go through a trial-and-error process in

the environment, as model-free methods do. Therefore, given an accurate model, model-based

algorithms are able to arrive at substantially better policies given the same amount of environment

interaction.

Let us give some examples of problems for which the two have been compared and in which

results reflect these characteristics. Most relevantly, [10] considered the problem of constructing

undirected graphs, finding that a model-based RL method that extends MCTS greatly improves

performance and scalability over a variant of the DQN model-free algorithm. [43] showed

that UCT outperforms DQN on a range of Atari game environments. The results of [44]

highlight thatUCTgreatly outperforms aREINFORCEmodel-free agent for theHex connectionist

game.

Returning to the causal discovery problem and the comparative performance of CD-UCT and

RL-BIC, as later discussed in the paragraph ‘determining budgets’ of §4, our experiments are set

up such that the budget of score function evaluations awarded to CD-UCT and RL-BIC is the

same. The superiority of CD-UCT is manifested as follows: CD-UCT yields substantially better

performance when given the same number of score function evaluations (as shown in table 1).

Furthermore, figure 2 shows that CD-UCT can match RL-BIC performance with two orders of

magnitude fewer score function evaluations, which translates to a DAG of the same quality being

found in minutes instead of hours.

Finally, we note that CD-UCT and RL-BIC both store the scores of previously encountered

parent sets of each random variable for computing the score function, and thus they are similar

in this regard. The two methods differ in how the proposals of possible causal structures are

generated, with our granular model-based technique enabling a substantially more efficient

navigation of the search space.

3. Methods

(a) Problem formulation
LetG= (V ,E) denote a DAGwith d nodes andm edges. Each node vi ∈V corresponds to a random

variable (RV) xi that may be discrete or continuous, while edges ei,j indicate directional causal

relationships. Let x denote the vector (x1, x2,… xd) of RVs distributed according to p(x). Let Pa(xi)

denote the parent set of xi in the causal graph, i.e. RVs xk s.t. ek,i ∈ E. Variables xi are assumed to

be independent of their non-descendants given their parent set [4, Chapter 6.5]:

p (x1,… , xd) =
d∏

i=1

p (xi ∣ Pa(xi)). (3.1)

This suffices to represent the problem with discrete RVs. For continuous RVs, we follow the

general structural equation model (SEM) of [3], in which RVs are generated according to xi =

fi(Pa(xi)), where fi represents some (typically unknown) function. Many subclasses of SEM exist,

with varying assumptions and properties. For example, in the additive noisemodel [45], variables

are generated by applying nonlinear functions to parents and adding arbitrary and jointly

independent noise.

Causal discovery: Given adatasetX∈ℝn×d of n d-dimensional observations, the goal is to identify

the true underlying DAG G. In score-based methods, this is formulated as the optimization of a

score functionℱ. LettingD(d) denote the set of DAGswith d nodes, the problem can be formalized

as finding one of the graphs G∗ satisfying

G∗ ∈ argmin
G∈D(d)

ℱ(G). (3.2)
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Score functions: We consider the BIC, which is known to be consistent and decomposable [46,

Chapter 18.3] (noting, however, that the proposed method does not rely on the latter property).

For discrete RVs, the BIC ℱDV can be computed as [46]:

ℱDV(G) = −
⎛

⎜

⎝

l (G|X) −
logn

2

d∑

i=1

(
(x̄i − 1) ∗ qi

)⎞

⎟

⎠

, (3.3)

where x̄i denotes the cardinality of the discrete RV xi and qi =
∏

xj∈Pa(xi)
x̄j. The quantity under

summation is known as ‘network complexity’ [47], and it is proportional to the number of free

parameters of the factorized joint distribution.

For continuous RVs, following [9], we consider two score functions based on residuals and

treat variances as heterogeneous (ℱHV) and equal (ℱEV):

ℱHV(G) =
d∑

i=1

(
n log (RSSi∕n)

)
+m logn (3.4)

ℱEV(G) = nd log
⎛

⎜

⎝

⎛

⎜

⎝

d∑

i=1

RSSi
⎞

⎟

⎠

∕(nd)
⎞

⎟

⎠

+m logn, (3.5)

where RSSi is the residual sum of squares obtained by regressing xi on its parent variables. Unless

otherwise stated, we use Gaussian Process regression [48] for fitting the data and computing the

residuals. Intuitively, the search problem can be thought of as finding the DAG that best explains

the observed data, with a penalty on the number of edges encouraging sparsity.

We note that, while the term BIC features in the name of the RL-BIC technique, the score

functions considered by [9] and used in the implementation of follow-up work [27] are not BIC

in a strict sense since the number of parameters that need to be estimated inside the regressor

(e.g. pairwise covariances) is not linear in the number of edges. We, nevertheless, choose identical

score functions so that the results are directly comparable with those reported in prior works.

(b) DAG construction as MDP
We next describe our formulation of the problem of finding an optimal DAG as an MDP. Unlike

RL-BIC, whose graph generation is one-shot, we frame the problem incrementally, i.e. as a

decision-making process. We add edges one by one to a (possibly empty) initial graph until an

edge budget b is exhausted. To maintain a manageable O(d) action space, we decompose the

addition of an edge into two separate decision-making steps. The MDP components are defined

as follows.

State: A state St is formed of a tuple (Gt, {�t}) containing the DAG Gt = (V ,Et) and a singleton

containing an edge stub �t. At even timesteps (tmod 2= 0), �t is equal to the empty set ∅. At odd

timesteps, �t is equal to vk, where vk ∈V is the node that was selected in the previous timestep,

from which a directed edge must be built.

Action: An action At corresponds to the selection of a node in V . To ensure that the acyclicity

property is maintained, actions that would introduce cycles must be excluded from the action

space. Let IsCyclıc(G) be a function that, given a DAG G, outputs a Boolean value corresponding

to whether the graph contains at least one cycle. We now define the set of edges Ct, whose

introduction after time t induces a cycle. Furthermore, letKt(vi) denote those connectable nodes vj
such that the candidate edge ei,j is valid:

Ct = {ei,j ∉ Et | IsCyclıc(V ,Et ∪ {ei,j})}, (3.6)

Kt(vi) = {vj | ei,j ∉ Ct}. (3.7)

The set of available actions containing the nodes that may be selected is defined as below, where

deg
+
(vi) denotes the out-degree of node vi. The first clause states that maximally connected nodes
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or those from which only cycle-inducing edges originate cannot be selected as the edge stub. The

second clause, in which vk denotes the node selected at the previous timestep, forbids actions that

would lead to the construction of a cycle-inducing or already-existing edge.

A(St) =

⎧
⎪
⎪

⎨
⎪
⎪

⎩

{vk ∈V | deg
+
(vk)< d − 1 ∧ |Kt(vk)|> 0},

if tmod 2= 0

{vl ∈V | ek,l ∉ Et ∧ vl ∈Kt(vk)},

otherwise.

(3.8)

Transitions: The dynamics is deterministic, meaning that, given a state s and an action a, there is

a single state s′ that can be reached with probability 1. When transitioning from an even timestep,

the model ‘marks’ the node corresponding to the selected action as the edge stub so that it forms

part of the next state. Otherwise, it adds the selected edge to the topology of the next state and

resets the edge stub.

Reward: The reward Rt is defined as the negative of the score so as to reconcile the reward

maximization paradigm of RL with minimizing the score function. Namely,

Rt = {
−ℱ(Gt), if t= 2b

0, otherwise.
(3.9)

(c) Incremental algorithm for detecting cycle-inducing edges
Computing the set Ct (equation 3.6) is required for determining the valid action space

(equation 3.8). One strategy is to evaluate the membership condition explicitly for all edges

that do not exist in the current edge set (which we refer to as candidate edges in the remainder

of this work). Cycle existence can be determined by creating a copy of the graph with the

candidate edge added and running a cycle detection algorithm (e.g. a traversal such as depth-first

search).

However, performing the necessary cycle checks for a set of candidate edges explicitly scales as

O(d3) usingDFS traversals. Given that thismust be performed after every edge addition (i.e. every

2 MDP timesteps), this is substantially inefficient, especially if sampling longer trajectories for

estimating future reward, as it is typically done in tree search.With this approach, deeper searches

are not feasible beyond very small graphs. Instead, we propose a means of keeping track of the

cycle-inducing candidate edges by leveraging the fact that our MDP formulation is incremental

(i.e. it builds the graph edge by edge).

Let us first introduce some key concepts prior to stating our result. For ease of exposition, we

denote a coarser-grained timestep �, which corresponds to 2 MDP timesteps and advances with

each edge addition. We also let De(vi) denote the set of descendants of vi (i.e. nodes that can be

reached starting from vi via a directed path); An(vi) denote the set of ancestors of vi (nodes that

can reach vi via a directed path). Both sets are taken to be closed (i.e. they include vi).

Theorem 1. Let G� denote a DAG and known cycle-inducing candidate edges C�. Given that edge

ei,j is chosen for addition at timestep � (ei,j ∈ E�+1), the set C�+1 is equal to C� ∪ �i,j, where �i,j = {ex,y ∉

E�+1 | (vx, vy) ∈De(vj) ×An(vi)}.

The proof is deferred to appendix A. The incremental algorithm making use of this update

rule is presented in algorithm 1, and a full run over multiple timesteps is illustrated in the

appendix.

A remaining point to address is the initial set C0. If construction begins from scratch, it

trivially holds that the only invalid choice after the addition of edge ei,j is ej,i. If starting from

an existing graph, C0 can be computed using traversals or, alternatively, applying the update rule

in theorem 1 with an arbitrary ordering of the initial edges. This only needs to be performed once
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Algorithm 1 Determining cycle-inducing candidates.

Input: timestep �, DAG G� = (V ,E�),

prior cycle-inducing candidates C�,

chosen next edge ei,j to add at time �.

Output: next cycle-inducing candidates C�+1.

if � = 0 then ⊳ initialize cycle-inducing candidates

if |E�|= 0 then C� = {ej,i}

else

C� = {}

for ex,y ∉ E�
if IsCyclıc(V ,E� ∪ {ex,y}) then

Add(C�, ex,y)

�i,j = {ex,y ∉ E�+1 | (vx, vy) ∈De(vj) ×An(vi)}

return C� ∪ �i,j

as an initialization step for the search process. We emphasize that, beyond this, no graph traversals

to determine cycles are needed at any point during execution.

Finally, we would like to note the connection to the concept of transitive closure T of a directed

graph, a data structure defined such that Ti,j = 1 if there is a directed path from vi to vj [49]. For

DAG construction, a candidate edge ei,j can be added without introducing a cycle if and only if

Tj,i = 0. Thus, an alternative approach to algorithm 1 is to compute the transitive closure of the

graph and to query it for eliminating cycle-inducing candidates.

There are well-known algorithms (e.g. [50]) for determining the transitive closure of the

graph, which may then be updated after every edge addition by incremental procedures [51,52].

However, both algorithm 1 and this alternative approach require time complexity of O(d2) since

the former computes a Cartesian product while the latter updates and then queries the transitive

closure for each candidate. We therefore opt for algorithm 1 due to its simplicity, but note that

some speed gains may be possible in practice by pursuing this alternative.

(d) The CD-UCT method
The method, which we term Causal Discovery UCT (CD-UCT), is given in pseudocode in

algorithm 2. It builds on the Upper Confidence Bound for Trees (UCT) [11] variant of MCTS.

A detailed overview of MCTS was given in §2b, including definitions of the components used in

the pseudocode description.

At a high level, the algorithm proceeds in a loop (lines 9–23) to decide a sequence of actions

that define a DAG. Each step of the nested loop (14–20) decides an individual action and proceeds

until a budget of simulations is exhausted. Within each step, the algorithm navigates the search

tree using its tree policy that balances exploration and exploitation and adds a new node (Selection

and Expansion, line 15); samples valid edges using its simulation policy until a terminal state is

reached and the reward can be computed (Simulation, line 16) and backpropagates the reward

to all nodes along the trajectory (Backpropagation, line 17). The child of the root node with the

highest average reward is chosen as the next root (line 21) and the process repeats. Regarding

the differences to standard UCT, we highlight the use of the proposed algorithm 1 to compute

the valid action space (10, 11). Furthermore, we note the adoption of the memoization of the best

trajectory found during the search (8, 18–20, 22), as in [9,10].
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Algorithm 2 Causal Discovery UCT (CD-UCT).

1: Input: DAG G0 = (V ,E0), score function ℱ,

2: edge budget b, simulation multiplier bsims,

3: search horizon h.

4: Output: actions A0,…AT−1 defining

5: best-scoring DAG GT = (V ,ET)w.r.t. ℱ.

6: t= 0, S0 = (G0, {∅}), rmax =−∞

7: compute Ct using algorithm 1

8: bestAs=Array(), pastAs=Array()

9: loop

10: update Ct using algorithm 1

11: compute A(St) using equation 3.8

12: if t= 2b or |A(St)|= 0 then return bestAs

13: create root node nroot from St
14: for i= 0 to (bsims ∗ d)

15: nborder, treeAs= TreePolıcy(nroot)

16: r, outAs= SımPolıcy(nborder, h)

17: Backup(nborder, r)

18: if r> rmax then

19: bestAs= [pastAs, treeAs, outAs]

20: rmax = r

21: nchild =MaxChıld(nroot)

22: Append(pastAs,GetActıon(nchild))

23: t= t + 1, St =GetState(nchild)

4. Experiments

(a) Experimental procedure
Datasets with continuous variables: We evaluate the methods on two real-world tasks in the

biological domain: Sachs [53] and SynTReN [54]. The former involves determining causal

influences of protein and phospholipid components in the signalling pathways of cells (d=

11,m= 17 and n= 853). The latter concerns the determination of the structure of gene regulatory

networks from gene expression data and consists of 10 transcriptional networks generated by

a simulator (d= 20,m∈ [20,… , 25],n= 500). Both are widely used as benchmarks in the ML for

causal discovery literature.

Our focus on realistic data is due to recent work showing that common synthetic benchmarks

may be trivial to solve [55]. This is based on the observation that marginal variance in simulated

DAGs with the additive noise model tends to increase along the causal order. Hence, a simple

baseline that determines a causal order by sorting the variances and performs a sparse regression

on the predecessors can be competitive with state-of-the-art algorithms on such synthetic

graphs.

Nevertheless, a benefit of synthetic data is that it allows fine-grained control of the generation

parameters.With this caveat inmind, we also perform two experiments on graphswith uniformly

sampled edges (i.e. Erdős–Rényi). In the first experiment,we consider graphswith d= 10 variables

generated using Gaussian Process (GP) regression. We study two scenarios: one in which we

vary the number of edges m∈ {15, 20, 25, 30, 35, 40, 45} while holding the dataset size fixed to

n= 103, and another in which we hold m= 30 constant and vary the number of datapoints

n∈ {101,… , 5 × 103}.
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For the second experiment, we consider a graph with d= 50, m= 113 (yielded by an edge

probability of 0.1) and n= 1000 generated with quadratic regression, which is quicker relative

to GP regression for graphs of this scale.

Datasets with discrete variables: We also evaluate applicable methods on classic benchmarks

in the Bayesian networks literature: Asia [56] (d= 8,m= 8), Child [57] (d= 20,m= 25) and

Insurance [58] (d= 27,m= 52). We use n= 1000 samples for each.

Construct-then-prune: We use a two-step procedure for determining the causal graph in the

continuous variables case. In the first stage, which we call the construct phase, plausible causal

relationships are generated. In the second stage, which we call the pruning phase, connections

are pruned according to some criterion. This paradigm is used by many causal discovery

methods [9,12,24]. Following RL-BIC, we use the procedure proposed in CAM by [24] for the

pruning phase, which applies a sparse regression [59] and removes edges corresponding to non-

significant relationships. For fairness of comparison, all methods undergo CAM pruning. We

note that the results of the construct phase are still meaningful as they allow us to compare the

effectiveness of the search space exploration conducted by the combinatorial methods.

Metrics: We report the reward metric, which directly corresponds to the score and is used by

the agents directly as the maximization objective. Additionally, we report the true positive rate

(TPR)—the fraction of all causal relationships that are correctly identified; false discovery rate

(FDR)—the fraction of causal relationships that are predicted by the model that are incorrect;

and structural Hamming distance (SHD)—the minimum number of edge additions, deletions

and reversals that are required to transform the output graph into the ground truth causal

graph.

Hyperparameters and implementation: We afford CD-UCT and RL-BIC the same number of four

hyperparameter configurations tuned on a held-out set of seeds to maximize reward and use the

default hyperparameters for the other methods. We use 100 runs for the Sachs dataset, 20 each for

the SynTReN and d= 10 synthetic graphs and 50 for the d= 50 synthetic graph and the discrete

RV graphs. Where applicable, we report means and 95% confidence intervals.2

Determining budgets: To ensure fair comparisons between CD-UCT and RL-BIC, we need to

align the edge budgets b and score function evaluation budgets bsims. To achieve this, we measure

the average number of edges output by RL-BIC in the construct phase across multiple runs,

yielding b= 49 edges for Sachs and b= 97 for SynTReN. Additionally, we set bsims to match the

1.28 × 106 evaluations of the score function performed by RL-BIC with the parameters suggested

by the authors. We use bsims = 1178 on Sachs and bsims = 337 and bsims = 33 for CD-UCT and

RandomSearch, respectively, on SynTReN. The 10× smaller simulation budget for RandomSearch

on the latter dataset is due to its exploration inefficiency leading to longer runtimes (see the

‘Runtime analysis’ paragraph in the following section). For the synthetic and discrete RV graphs,

we set b equal to the true number of edges and bsims = 1000.

(b) Baselines
Wecompare the proposedmethodwith the following primary baselines that search inDAG space:

RL-BIC [9], Greedy Search (GS), Random Search (RS) andUniform Sampling (US). Thesemethods

all operate with an MDP formulation of DAG construction. With the exception of RL-BIC, the

MDP defined in §3b is used.

We do not compare directly against the RL-based ordering methods CORL and RCL-OG since

they do not operate in DAG space. As we discuss in §2a, searching in ordering space is more

tractable at the expense of the potential introduction of errors. Nevertheless, a comparison can be

made on the Sachs dataset since several works report results on it. CD-UCT achieves a SHD of

10.6 (averaged over 100 runs) by searching in DAG space, while the ordering-based CORL and

2Our implementation, data and instructions are available at https://github.com/VictorDarvariu/causal-discovery-mbrl, which

enables reproducibility of all the reported results. Further details are provided in appendix B.
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RCL-OG yield 13 and 11, respectively, according to single-run results reported in [28]. Therefore,

superior results are obtained byCD-UCTon this benchmarkdespite its operation in a larger search

space.

As comparison points, we also consider several non-combinatorialmethods that output DAGs.

For continuous RVs, we examine the performance of the method against the non-combinatorial

methods CAM [24], LiNGAM [7] and NOTEARS [19]. For discrete RVs, we also compare with the

exact method GOBNILP [60].

Furthermore, we also consider the GES and Peter–Clark (PC) algorithms. Unlike the

approaches listed above, these procedures work in the space of Markov equivalence classes.

Therefore, they may return undirected edges as the same conditional independence relations can

be encoded by different graph structures [61]. This raises the issue of how the metrics should

be adapted to deal with undirected edges. We treat GES and PC favourably by classifying an

undirected relationship as a true positive if predicted correctly in either direction. Consequently,

we use an asterisk in the relevant tables to indicate that the results for GES and PC are not directly

comparable and additionally report the percentage of undirected edges that they output.

We now provide a high-level overview of each of the baseline methods aside from RL-BIC,

which was discussed in detail in §2a.

• Greedy Search (GS): This method creates, at each step, a search tree of depth 1 that enumerates

all graphs that can be reached via the addition of a single edge. The edge that leads to the

largest improvement in the score function is selected for addition, and the process is repeated

starting from the resulting graph until the edge budget is exhausted.

• Random Search (RS): Thismethod samples valid actions uniformly at random startingwith an

empty DAG until a terminal state is encountered and the resulting DAG is scored. The best-

scoring DAG found across all performed simulations is output as the result. Since it is given

a budget of simulations comparable with CD-UCT and RL-BIC, it gauges the effectiveness

with which the search space is navigated.

• Uniform Sampling (US): This strategy corresponds to choosing a graph uniformly at random

out of the state space. It is not intended to be competitive and only meant as a comparison

point given the metrics are on different scales.

• Causal Additive Model (CAM): CAM [24] is an order-based method that assumes the additive

noise model. In the first stage, an ordering of the causal variables is determined using

maximum likelihood estimation. In the second stage, sparse regression [59] is used to select

edges that are consistent with the ordering.

• Linear Non-Gaussian Acyclic Model (LiNGAM): LiNGAM [7] assumes a linear model with

noise generated according to a non-Gaussian distribution. The technique is based on

Independent Component Analysis, which is used to obtain a ‘mixing matrix’. After

appropriate permutation and normalization, it is used to estimate pairwise ‘connection

strengths’ that determine edge existence.

• Non-combinatorial Optimization via Trace Exponential and Augmented Lagrangian for Structure

Learning (NOTEARS): NOTEARS [19], also discussed in the main text, proposes to replace

the discrete acyclicity constraint with a continuous one. In this way, the causal identification

problem is cast as a mathematical program, for which continuous optimization techniques

can be used. It assumes a linear structural equation model and learns a matrix of pairwise

weights that is thresholded to determine the relationships.

• GOBNILP: GOBNILP [60] is an exact method for learning a Bayesian network structure. It

is based on a branch-and-cut approach that features an integer programming formulation

together with cutting planes that are specifically designed for this problem. Given the

practical limitation of needing to find a solution within reasonable computational time, it

operates in a best-effort fashion. For challenging problem instances, it therefore may return

the best-found graph and an upper bound on the optimal score. Furthermore, to reduce

the search space, GOBNILP allows specifying a limit on the size of the parent sets. In

our experiments, we set this parameter to 4, which enables GOBNILP to find the optimal
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Figure 2. Varying the bsims simulation budget parameter on Sachs. The subfigures show the construction reward, structural
Hamming distance (SHD) for construction and pruning and wall clock time. CD-UCT and Random Search both outperform
RL-BIC, even when given 100 times fewer score function evaluations.

structure for the considered discrete variable datasets, whose RVs have atmost three parents.

Nevertheless, this requires knowledge about the ground truth graph that is not required by

(and supplied to) the other techniques.

• Greedy Equivalence Search (GES): The GES algorithm searches greedily in the space ofMarkov

equivalence classes; we note that it differs from the Greedy Search procedure described

above,which searches greedily in the space of directed edge additions instead. The algorithm

proceeds in two phases that perform edge additions and deletions, respectively, until local

maxima are encountered. It is guaranteed to find the optimal equivalence class in the limit

of infinite samples [12]. Typically, however, causal discovery is performed in a finite sample

regime in which this guarantee does not hold.

• Peter-Clark (PC): The PC [62] algorithm is a constraint-based method that proceeds in

two stages. First, conditional independence tests are carried out in order to determine an

undirected graph. Second, the edges are (partially) oriented byperforming d-separation tests.

Given the method does not prescribe particular tests, it is applicable to a variety of causal

discovery scenarios, including time series.

5. Results
In this section, we present results with the ℱDV score function for discrete variables and the ℱHV

score function for continuous RVs. For completeness, we repeat the main experiments with the

ℱEV score functionwith themore restrictive ‘equal variances’ assumption. These results are shown

in appendix C and display similar characteristics.

Main results with continuous variables: The key results on the Sachs and SynTReN datasets

are shown in table 1. In the construction phase, CD-UCT performs best out of the considered

combinatorial methods in terms of the rewards received and the metrics. The performance

improvements with respect to RL-BIC are substantial. Indeed, RL-BIC achieves worse results than

a Random Search that is afforded a similar number of score function evaluations.

After pruning, CD-UCTmaintains the best results out of all combinatorialmethods. It performs

the best overall on Sachs yielding an SHD of 10.6, but it is outperformed on average by the order-

based CAM method on the SynTReN graphs. Note that the SHD of RL-BIC on SynTReN is lower

due to the pruning eliminating more non-significant edges rather than its identification of true

relationships, as reflected in the much poorer TPR and FDR. Furthermore, the × in the NOTEARS

column is due to the method not returning DAGs for some of the instances in this dataset, as it

may become stuck in local optima [22]. GES and PC perform well on both datasets but generally

output large fractions of undirected edges.

Budget analysis: We conduct an experiment in which we vary the simulation budget multiplier

afforded to the CD-UCT and Random Search agents for the Sachs dataset. These results are shown

in figure 2, in which the largest value on the x-axis corresponds to equal simulations to RL-BIC.
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Figure 3. Runtimes of CD-UCT with the incremental algorithm 1 against a naïve implementation that performs traversals to
detect cycles.

Beyond a tiny simulation budget, CD-UCT is indeed able to navigate the search space better

and find higher-scoring graphs than Random Search. Strikingly, even with a modest simulation

multiplier corresponding to approximately 100 times fewer simulations than RL-BIC, both CD-

UCT and Random Search yield better reward and SHD. This provides evidence of the advantages

of CD-UCT compared with RL-BIC (and, more generally, of model-based approaches compared

with model-free ones, as discussed in §2b).

Main results with discrete variables: As shown in table 2, GOBNILP performs best overall,

which is to be expected given its exact nature. CD-UCT outperforms the directly comparable

combinatorial methods that use the same MDP formulation (GS, RS, US). The performance

difference between CD-UCT and GS is smaller relative to the continuous RV case. GES strongly

outperforms CD-UCT and GS, which highlights the possible advantages of searching in the

space of equivalence classes. The relationship between RS and GS is reversed relative to the

continuous RV case: the latter obtains substantially better results for the larger two graphs. This

suggests that this setting favours shorter search horizons. The exclusion of RL-BIC from this

experiment is due to its incompatibility with discrete RVs. PC only outputs undirected edges

for the considered datasets. The missing values for PC on the Insurance dataset stem from the

inability of the implementation we used to handle datasets with only one observed value for

certain RVs.

Impact of incremental algorithm: We examine the impact of algorithm 1 for eliminating cycle-

inducing candidates by comparing CD-UCT with a naïve version that performs traversals, all

other aspects being equal. This is carried out on graphswith d∈ {10, 20, 30, 40, 50}, edge probability

of 0.1, quadratic regression and bsims = 10. We showcase the results of this analysis in figure 3. The

speedup scales super-linearly and improves from a factor of approximately 1.25× for graphs with

d= 10 to 13.25× for graphs with d= 50. We conclude that this algorithm is a key component for

tree search in DAG space with larger graphs.

Synthetic graph experiments: In figure 4, we examine the impact of the true graph density and

dataset size on performance. When the edge count is low, CD-UCT and Greedy Search perform

similarly. As the density grows, the two curves diverge: CD-UCT improves substantially (as does

RandomSearch),whileGreedy Search becomes akin to uniformly randomly sampling a trajectory.

To understand why this occurs, recall that Greedy Search computes the improvement in the score

after each edge addition, while CD-UCT and Random Search compute the score at the terminal

state of theMDP once the entire hypothesized causal graph has been generated. In sparser graphs,

it is common for variables to have few or even no parents, and therefore, the greedy criterion is

an effective approximation. In denser graphs, in which parent sets have larger cardinality, this

leads to a degradation in performance as Greedy Search can only consider the score contribution
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Figure 4. Results with problem instances of varying graph density and number of datapoints.

Table 2. Results with discrete RVs. GES outputs 20%, 8% and 4% undirected edges for the three datasets, respectively, while
PC outputs 100% undirected edges (i.e. no directionality can be determined).

dataset metric CD-UCT GS RS US GOBNILP GES* PC*

Asia reward ↑ −2.171±0.002 −2.177 −2.207±0.003 −2.727±0.044 −2.165 — —

TPR ↑ 0.505±0.062 0.250 0.362±0.052 0.128±0.033 0.750 0.875 0.625

FDR ↓ 0.495±0.062 0.750 0.637±0.052 0.873±0.033 0.250 0.150 0.000

SHD ↓ 5.120±0.503 7.000 7.620±0.520 12.620±0.571 3.000 3.000 3.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Child reward ↑ −13.036±0.026 −13.018 −15.154±0.041 −17.646±0.306 −12.972 — —

TPR ↑ 0.670±0.029 0.640 0.174±0.018 0.064±0.016 0.800 0.720 0.440

FDR ↓ 0.233±0.037 0.360 0.826±0.018 0.936±0.016 0.091 0.514 0.000

SHD ↓ 9.580±1.133 12.000 37.700±0.699 45.300±0.827 5.000 20.000 14.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Insurance reward ↑ −14.740±0.029 −14.746 −19.115±0.068 −27.093±2.220 −14.358 — ×

TPR ↑ 0.331±0.014 0.308 0.126±0.012 0.078±0.010 0.481 0.596 ×

FDR ↓ 0.596±0.038 0.692 0.874±0.012 0.922±0.010 0.265 0.426 ×

SHD ↓ 54.460±2.646 57.000 85.080±1.167 92.080±1.080 28.000 40.000 ×
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Approximate wall clock running time in hours, minutes and seconds with theℱHV score function.

CD-UCT RL-BIC GS RS US CAM LiNGAM NOTEARS GES PC

Sachs 1:53:24 1:43:33 0:01:48 3:46:56 0:00:04 0:00:39 0:00:04 0:00:05 0:00:01 0:00:03

SynTReN 2:10:37 35:32:20 0:03:11 10:35:48 0:00:07 0:01:38 0:00:22 0:01:58 0:00:01 0:00:04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of a single edge, and not of a larger set of parent variables. Regarding dataset size, performance

improves for all methods as the number of datapoints increases. The performance of Random

Search plateaus while the relative ones of CD-UCT and Greedy Search remain similar, which is

consistent with the middle-point on the x-axis of the left plot. The number of edges appears to

be a stronger determinant for the relative performance of CD-UCT and Greedy Search on these

synthetic instances. Finally, there is no definitive winner among Greedy Search and Random

Search since each achieves better performance in some settings, as also observed on the real-world

benchmarks.

Runtime analysis: In table 3, we show the wall clock runtimes associated with the results

presented in table 1. CD-UCT yields similar runtimes to RL-BIC on the Sachs dataset, but it
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Table 4. Results with d = 50 synthetic continuous RVs. GES and PC output 1% and 8% undirected edges, respectively.

CD-UCT RL-BIC GS RS US CAM LiNGAM NOTEARS GES* PC*

Reward ↑ 303.466±2.532 ∞ 275.519 81.903±1.281 14.270±2.490 — — — — —

TPR ↑ 0.852±0.009 ∞ 0.841 0.100±0.006 0.046±0.006 0.611 0.381 0.124 0.442 0.177

FDR ↓ 0.148±0.009 ∞ 0.159 0.900±0.006 0.954±0.006 0.623 0.865 0.500 0.780 0.767

SHD ↓ 30.880±1.704 ∞ 34.000 198.020±1.243 210.220±1.353 149.000 326.000 107.000 227.000 141.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is more than an order of magnitude faster on SynTReN despite not being implemented in

a low-level programming language. This is a consequence of the targeted exploration of the

search space, which leverages the decomposability of BIC to avoid regressions for already-

seen parent sets of a given variable. Random Search displays the same inefficiency in terms

of exploration and requires 5× more time despite performing 10× less simulations than CD-

UCT on the SynTReN dataset. The methods that do not perform the same number of score

function evaluations or are based on a different paradigm altogether are characterized by

a lower wall clock time, partially due to implementation concerns. In particular, the GES

implementation that we interface with is very fast due to its use of C++ bindings. The

runtime of a pure Python implementation of GES would normally exceed that of Greedy

Search, since GES also performs an edge deletion phase and requires tracking equivalence

classes. Finally, we note that the runtimes of the other methods that construct graphs

incrementally (Greedy Search, Random Search, Uniform Sampling) also benefit from the

incremental algorithm for determining cycle-inducing edges, as they share the same environment

for graph construction.

Scaling to larger graphs: Our final experiment is performed with a synthetic graph with d=

50 as previously described. These results are displayed in table 4. CD-UCT shows statistically

significantly better performance in terms of reward and metrics with respect to Greedy Search,

albeit only marginally for the latter. RL-BIC cannot function with graphs of this size as it needs

to model d2 edge probabilities, which is unsurprising given the remarkable increase in wall clock

time observed from d= 11 to d= 20 as shown in the paragraph above. We attribute the better

performance of score-based methods relative to CAM, LiNGAM, NOTEARS, GES and PC to the

use of quadratic regression both in the ground truth generation and the scoring function, acting

as a strong model class prior.

6. Conclusion
Summary: In this work, we have proposed CD-UCT, a practical yet rigorous method for causal

structure discovery based on an incremental construction process through RL. The latter is an

attractive paradigm due to its flexibility regarding the types of random variables, data generation

models and score functions it can accommodate.We have also derived an algorithm for efficiently

determining cycle-inducing edges as construction progresses, which substantially improves

running times. We have demonstrated significantly better performance than RL-BIC and Greedy

Search on two real-world tasks, while showing that RL-BIC often performs worse than a Random

Search in DAG space. Furthermore, we have examined the impact of graph density and dataset

size on the relative performance of the methods and shown that, unlike RL-BIC, our method can

operate on graphs with d= 50 nodes.

Implications: Our results highlight that model-based RL can substantially outperform model-

free RL techniques for causal discovery, echoing findings in other applications for which they

have been compared. Additionally, we also showed that the myopic horizon of Greedy Search

may be suboptimal, and a deeper search can yield better causal structures in a variety of settings.
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Given that greedy approaches are a component in many algorithms—e.g. they are used to search

the space of equivalence classes in GES [12] and the space of orderings in CAM [24]—performing

a deeper search may find broader uses with different state and action space formulations. Our

results have also shown that CD-UCT can attain competitive performance on widely accepted

benchmarks and problem settings despite its lack of problem-specific assumptions, which stresses

the potential of the RL framework for approaching causal discovery. Other settings in which the

assumptions of many classic methods would be violated, whereas ours is soundly applicable,

include score functions that are not decomposable (e.g. the generalized score functions proposed

by [8]), problems with mixed discrete and continuous random variables and problems with

diverse types of statistical relations (e.g. both linear and nonlinear dependencies within the

same causal discovery instance). We leave the application of CD-UCT in such scenarios to future

work.

Extensions and improvements: CD-UCT can be adapted to search in ordering space bymodifying

theMDP definition. This would involve episodes of length d to construct an ordering followed by

a post-processing step to obtain a DAG. We leave this step, as well as experimental comparisons

with other ordering-based techniques, for future investigations. A highly practical improvement

for reducing the DAG search space and improving the scalability of CD-UCT is to impose a

limit on the sizes of parent sets of the RVs, as performed by GOBNILP. This can be realized by

modifying the second clause of equation 3.8 to include an additional constraint on the in-degree of

node vl. Another interesting research direction is the improvement of the simulation policy at the

heart of our approach. Currently, it treats each edge as equally likely when performing rollouts,

which is free from bias but may result in noisy estimates of future rewards. Prioritizing edges

according to statistical relationships present in the dataset or external knowledge provided by an

expert may improve the accuracy of the discovered structures. Finally, as it is based onMCTS, the

method can be extended to use neural networks to bias the navigation of the search space. The

use of policy and value networks, as leveraged by AlphaGo [63] and its successors, have proven

successful in a variety of domains. However, a challenge that differentiates causal discovery is

the uniqueness of each instance of the problem, as the meaning of the measurements captured by

the random variables differs between datasets. Therefore, for function approximation techniques

to offer meaningful generalizations, they must be applied to causal discovery instances that are

closely related.

Other applications: The proposed RL method can be applied beyond causal discovery, since it

does not rely on assumptions about the state space and reward functions, as long as they consist

of and can be applied to DAGs. As such, the method is directly applicable to other scenarios

where finding DAGs that optimize an objective function is relevant. Notably, DAGs are often

used to represent dependencies, e.g. those between tasks that must be scheduled in time-shared

concurrent computer systems [64], relationships between software packages [65] or components

in a manufacturing pipeline [66].
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Appendix A. Proof of theorem 1
Theorem 1. Let G� denote a DAG and known cycle-inducing candidate edges C�. Given that edge

ei,j is chosen for addition at timestep � (ei,j ∈ E�+1), the set C�+1 is equal to C� ∪ �i,j, where �i,j = {ex,y ∉

E�+1 | (vx, vy) ∈De(vj) ×An(vi)}.

Proof . The goals are to prove that (1) each candidate edge ex,y ∈ C�+1 would cause a cycle at

time � + 1 and (2) that no other cycle-inducing candidate edge exists. In other words, establishing

(1) proves necessity and (2) proves sufficiency.

(1) Necessity. There are two possible cases, corresponding to the components of the union.

Case 1: ex,y ∈ C�. By definition, the introduction of ex,y causes a cycle at time �. The fact that the

sets of edges in successive timesteps are strict subsets of each other, i.e. E� ⊂ E�+1, implies that ex,y
would cause a cycle at time � + 1.

Case 2: ex,y ∉ C�. The candidate must belong to the second component of the union, which

implies that vx ∈De(vj) and vy ∈An(vi). There are four subcases, arising from whether x
?
= j and

y
?
= i.

Let us treat the subcase (x≠ j, y≠ i), noting that the others are provable in a similar manner. By

definitions of the descendant and ancestor sets, we have that there exist the paths (vj,… , vx) and

(vy,… , vi). Given that edge ei,j already exists (having been added previously), the addition of edge

ex,y would create the path (vi, vj,… , vx, vy,… , vi), which is a cycle. Hence, ex,y would cause a cycle

at time � + 1.

(2) Sufficiency. Next, the goal is to prove that no other cycle-inducing candidate edge exists.

We do this by contradiction: assume that there is an edge ex,y ∉ C�+1 such that its addition causes

a cycle.

By the definition of C�+1 and De Morgan’s laws for sets, we have that ex,y ∉ Ct ∧ ex,y ∉�i,j. The

first clause implies that the candidate edge was not cycle-inducing before the addition of ei,j in

the last step; therefore, any such cycle must contain the edge ei,j in addition to ex,y. The second

clause implies that vx ∉De(vj) and vy ∉An(vi), which means that there are no paths of the form

(vj,… , vx) and (vy,… , vi). Let us use vj ↛ vx and vy ↛ vi to denote these unreachability constraints.

Given the requirement for the cycle to contain both ei,j and ex,y, the possible types of cycles are:

1. (vi, vj ↛ vx, vy ↛ vi),

2. (vx, vy ↛ vi, vj ↛ vx),

3. (vi=x, vy ↛ vi=x),

4. (vx=i, vj ↛ vx=i),

5. (vi, vj=y ↛ vi),

6. (vx, vy=j ↛ vx).

This list is exhaustive because, by definition, vx ∉De(vj) ⟹ x≠ j and vy ∉An(vi) ⟹ y≠

i. These paths cannot be cycles as a consequence of the unreachability constraints defined

above. Therefore, the edge ex,y ∉ C�+1 does not cause a cycle, which contradicts our initial

assumption. ■

Appendix B. Further experiment details
Code and data: Refer to the repository at https://github.com/VictorDarvariu/causal-discovery-mbrl

or the README.pdf file contained in the supplementary material for detailed instructions on

how to set up and run the implementation. Given the use of the Docker container software,

which fully specifies how dependencies should be obtained and installed, performing the set-

up is greatly simplified. For both Sachs and SynTReN, we use the files released by [21] at

https://github.com/kurowasan/GraN-DAG/tree/master/data under the MIT licence. We leverage

the synthetic data generator implementations used in [21] for GP regression (MIT licence)

and [9] (Apache license) for quadratic regression, respectively. For discrete RV data, we use the
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Table 5. Approximate wall clock running time in hours, minutes and seconds with theℱEV score function.

CD-UCT RL-BIC GS RS US CAM LiNGAM NOTEARS GES PC

Sachs 1:49:39 1:30:12 0:01:20 2:35:02 0:00:04 0:00:39 0:00:04 0:00:05 0:00:01 0:00:03

SynTReN 2:01:43 35:50:42 0:03:07 9:33:47 0:00:07 0:01:38 0:00:22 0:01:58 0:00:01 0:00:04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bayesian Network Repository [67]. Datasets are provided in the datasets/subdirectory of the

repository and supplementary material to render reproducibility easier.

Implementation details:We build our incrementalDAGconstruction environment and the agents

including CD-UCT in pure Python. The current implementation is a prototype and substantial

improvements in speed (easily 2–3 orders ofmagnitude) can be obtained through implementation

in a lower-level programming language, especially as graph size grows. We leverage the score

function, metrics and pruning implementations released by [9] at https://github.com/huawei-

noah/trustworthyAI/tree/master/research/Causal%20Discovery%20with%20RLunder theApache

license. For LiNGAM and NOTEARS, we use the open-source implementations provided by

their respective authors. For CAM, GES and PC, we use the ‘bridge’ to implementations in the

R programming language from the Causal Discovery Toolbox library [68].

Parameters: For CD-UCT, we vary the exploration parameter �UCT ∈ {0.025, 0.05, 0.075, 0.1},

while for RL-BIC we vary the model input dimension ∈ {64, 128} and learning rate ∈

{0.001, 0.0001}—this set includes the default parameters reported in the paper. For the other

methods, the default hyperparameters are used. For CD-UCT, we use the full search horizon

on Sachs and the d= 10 synthetic continuous RV graphs and a reduced horizon of h= 16 for

SynTReN, h= 8 for the d= 50 synthetic graph, h= 4 for the discrete RV graphs, respectively.

These values were selected by grid search for reward maximization as described below. As the

breadth and the depth of search tree grow, a limited horizon is required due to greatly increased

search spaces, which lead to substantially noisier estimates of future rewards using uniform

random sampling. For the synthetic graph experiments with varying number of datapoints n,

the full set of considered values is n∈ {10, 25, 50, 75, 100, 175, 250, 375, 500, 750, 1000, 1750, 2500,

3750, 5000}.

Hyperparameter selection methodology: We perform a simple grid search to determine the best

values of the hyperparameters. We note that the goal of hyperparameter selection is to optimize

the reward (i.e. find the best graph w.r.t. ℱ) and not the final evaluation metric (e.g. SHD) as

this would mean validating on the ground truth graph, which is methodologically incorrect.

Furthermore, the initializations of the algorithms differ between the parameter tuning and

evaluation runs, so that we do not simply memorize the best results.

Computational infrastructure: Experiments were conducted exclusively on CPUs on an in-house

high-performance computing (HPC) cluster. On this infrastructure, the experiments for Sachs

took approximately 43 days of single-core CPU time, while the experiments for SynTReN took

approximately 1660 days (approx. 4.5 years) of single-core CPU time. These figures include

hyperparameter tuning. The majority of the computational time for SynTReN was used by

RL-BIC due to its inefficiency (see the ‘runtime analysis’ paragraph in §5). The experiments for

the graphs with discrete RVs took approximately 33 days of single-core CPU time.

Appendix C. Results withℱEV score function
Results with the ℱEV score function are shown in table 6. Corresponding runtimes are shown in

table 5. CD-UCT is still the best method in terms of rewards for both datasets. Interestingly, in

the case of the Sachs dataset, the best score does not necessarily lead to the best values for the

metrics (TPR/FDR/SHD), with CD-UCT, RL-BIC and Random Search all performing similarly in

this regard.
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Figure 5. A full illustration of the proposed algorithm for tracking cycle-inducing edges. At each timestep �, an edge (shown
with a dashed line) is introduced, and the candidate edges that would connect a descendant of the endpoint to an ancestor
of the starting point are added to the set C� . This eliminates the need to explicitly check for cycles. We also note that this
algorithm simply determines the invalid edges, with the choice of which edge to add being left to the higher-level causal
discovery method.
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