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ABSTRACT
Smartphone sensing enables inference of physical context, while
online social networks (OSNs) allow mobile applications to harness
users’ interpersonal relationships. However, OSNs and smartphone
sensing remain disconnected, since obstacles, including the syn-
chronization of mobile sensing and OSN monitoring, inefficiency
of smartphone sensors, and privacy concerns, stand in the way of
merging the information from these two sources.

In this paper we present the design, implementation and eval-
uation of SenSocial, a middleware that automates the process of
obtaining and joining OSN and physical context data streams for
the development of ubiquitous computing applications. SenSo-
cial enables instantiation, management and aggregation of context
streams from multiple remote devices. Through micro-benchmarks
we show that SenSocial successfully and efficiently captures OSN
and mobile sensed data streams. We developed two prototype ap-
plications in order to evaluate our middleware and we demonstrate
that SenSocial significantly reduces the amount of programming
effort needed for building social sensing applications.

Keywords: Mobile sensing, social sensing, ubiquitous computing,
mobile middleware.

Categories and Subject Descriptors: C.2.1 [Network Architec-
ture and Design]: Wireless Communications; D.2.11 [Software Ar-
chitectures]: Domain-specific architectures.

General Terms: Design, human factors, performance.

1. INTRODUCTION
The smartphone revolution has marked the beginning of the twenty-

first century. Today more than a billion people carry with them
a device capable of always-on connectivity, high-speed data pro-
cessing and advanced sensing [11]. Besides being a technically
advanced device, the smartphone is also a highly personal item, in-
terwoven with the everyday life of its user. These affordances of
the smartphone opened up a market for context-aware, personal-
ized applications, covering domains such as healthcare [19], safety
[43], environment monitoring [35], and transport [41].
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Data collected through smartphone sensors comes in high reso-
lution and spans over multiple modalities (context types): location,
movement, audio environment, proximity with other objects, col-
location with other devices, to name a few. In addition, sensor data
collection can be done on an unprecedented scale with millions of
users in parallel.

Access to mobile sensor data can revolutionize numerous fields,
from Web-based applications, where using such data can lead to
increased application relevance and improved user experience [26,
45], to psychological and sociological research, where access to
fine grain context provides a glimpse into the everyday life of an
individual [18, 34]. However, mobile context-awareness is still
not adopted on a large scale, and to the full extent of the available
modalities. In fact, today’s Web-based applications mainly exploit
only location information from phones [6]. In addition, there is
a limit to what a physical sensor of a device can infer about the
user, and a rich set of contextual data, especially that related to a
user’s emotional state, thoughts and opinions, remains untapped.
These, however, can be mined through OSNs. OSNs enable users
to establish and maintain social connections, express themselves
through text, images, sounds and videos, therefore, can capture so-
phisticated information such as users’ interests, relationships, event
attendance, and much more. As such, OSNs represent a rich source
of contextual information that is complementary to the aspects cap-
tured by physical sensors [14, 22].

As proposed by Beach et al. [14], OSNs serve as another source
of users’ contextual information. The OSN data streams can be
further coupled with physical sensor streams in order to provide a
holistic picture of users’ behavior, habits and interests. Possible ex-
amples include a social science research application that captures
emotions through the sentiment analysis of OSN posts, senses the
physical context as the relevant posts are made, and maps the data
to the social network in order to not only examine single user’s
emotions, but also analyze large-scale emotion propagation, and
various factors that might drive it. However, developing such con-
ceptually simple applications is often challenging due to the intri-
cacy of implementing the means of obtaining, refining and manag-
ing streams of coupled social and physical context in real time.

To address these challenges in this paper we present SenSocial,
to the best of our knowledge, the first middleware that lifts the
burden of building and binding social and physical context data
streams from an application developer. SenSocial abstracts the
means of obtaining linked OSN and sensor information in real time,
and lets the developer concentrate on high level functionalities of
rich ubiquitous computing applications. Our middleware offers re-
mote management of streams and filters to refine contextual (phys-
ical and social) data streams, so that relevant parts of the data are
isolated and delivered to the overlying application. Important prac-



tical aspects of middleware functioning, such as energy efficiency,
data transmission burden, memory allocation, real-time triggering,
and privacy management, were all considered during the design
stage. Moreover, for the privacy concerns SenSocial gives the prac-
titioners a clear indication of all the sensing modalities used by the
application, as well as the location and the granularity at which
such data are stored.

The contributions that SenSocial brings to the field of mobile
social sensing middleware can be summarized as follows:

• Close coupling of OSN and mobile sensing data streams
in real time. In SenSocial, OSN actions such as comments,
posts, and likes, can immediately trigger remote sensing of
the physical context on the user’s mobile. This captures the
relationship between the activities that the user performs on
OSNs and the physical context extracted by means of the
mobile phone sensors.

• Remote management of data stream. SenSocial allows the
application developer to remotely create, subscribe to, and
filter sensor data streams on the mobile clients. Such a stream
can be managed dynamically from the server. In addition, the
middleware enables group stream management through the
multicast stream – a collection of streams originating from
geographically collocated or OSN-interconnected users.

• Filtering of data streams. SenSocial supports both topic-
based and content-based streams. Content-based streams en-
able the specification of modalities of interest, and condi-
tions under which these modalities should be sampled. Such
a condition can be based on a time interval of a day, a certain
value of the physical context, e.g. “when the user is running",
and the OSN actions of the user, e.g. “when the user likes a
page". Moreover, the SenSocial server component supports
logical conditions that involve sensor streams generated by
multiple users who are related to the target user thorough
their geographical location and/or OSN links.

• Privacy management control. SenSocial allows the devel-
oper to manage the type and the level of granularity – raw
or classified to a high-level description – of sensed contex-
tual data that are be stored and shared among the middleware
components. Note that the OSN side privacy is left to be
handled by the OSN platform as per the users’ requirements
(such as visibility of Facebook posts defined by users).

SenSocial is envisioned as a distributed middleware: we imple-
ment it as an Android smartphone library and a Java library residing
on a centralized server. We design SenSocial as a light-weight and
easy-to-use general purpose middleware for mobile social sensing.
By means of micro-benchmarks we evaluate SenSocial’s battery
consumption, memory and processing overheads, and context sens-
ing latency. We show that an application built on top of the middle-
ware performs well with respect to the above metrics, as compared
to a similar application built without using the middleware. Also,
the middleware allows fine tuning of data sampling, transmission
and privacy control parameters in order to achieve the desired trade-
offs, such as data granularity versus energy efficiency. We build
two sample applications based on social and sensor information
streams, which demonstrate how SenSocial lifts the burden of the
OSN actions and physical context integration and remote stream
management from the developer. In particular, we show that by us-
ing SenSocial the amount of code needed for the implementation
of the applications is greatly reduced.
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Figure 1: SenSocial architecture overview. SenSocial is dis-
tributed over a server and participating mobiles. In addition,
the middleware taps into OSN data of the users. The server-
side of the middleware remotely controls, via triggers and data
aggregation, mobile sensing according to observed OSN ac-
tions. An API is exposed to developers for building both mobile
and server-side applications. In particular, sensor data streams
can be created and manipulated on both mobiles and the server.

2. SENSOCIAL AT A GLANCE
Figure 1 shows the high-level architecture and the flow of in-

formation in our system. The middleware is distributed over two
components, one residing on mobiles and the other on a centralised
server. In addition, SenSocial implements necessary plug-ins for
accessing OSN information. A plug-in registers actions that SenSo-
cial users perform on an OSN (1), irrespective of the device (desk-
top, laptop or smartphone) and the means of OSN access (stand-
alone application or online website). When an action is registered
by the plug-in, action presence (2) and the related OSN content (3)
are sent to the server. The server side of SenSocial allows the ap-
plication developer to define desired modalities that will be sensed
on the mobiles, and the conditions that need to be satisfied for the
sensing to commence. These are encapsulated in filters that the
application can modify dynamically. If the detected OSN action
satisfies the conditions, a trigger is sent to selected mobiles to com-
mence sensing (4). When a mobile receives a request for sensing, it
samples relevant sensors, and sends the stream of data to the server
(5). Thus, SenSocial allows remote, dynamic management of sen-
sor and OSN data streams coming from multiple mobiles.

Figure 2 shows an example application that can easily be built
on top of SenSocial. The application notifies a user when one of
his/her OSN friends visit his/her home town. In the figure, there are
five users of the application: users A and B who live in Paris, and
users C, D and E living in Bordeaux. User A has social network
links with C and D, and the server keeps track of these connec-
tions. The context of each of the users is periodically sensed by the
mobile application and transmitted to the server. Let us assume that
user C travels from Bordeaux to Paris. As user C enters Paris, the
new sensed context is transmitted to the server. The server identi-
fies Paris, the home town of user A, as the current location of one
of A’s OSN friends (user C in this case), and triggers the mobile
application installed on A’s phone that in turn notifies A about the
presence of a friend in Paris. To summarize, SenSocial enables
applications that not only collect a richer context, but also bridge
mobile sensing and OSN information.
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Figure 2: Geo-aware social notifications built on top of SenSo-
cial. User A gets notified when one of her friends, in this case
user C, enters Paris.

3. SYSTEM DESIGN
SenSocial consists of a middleware layer on both mobile devices

and a centralized server. The overlying application, that can also
be distributed over the mobiles and the server, interacts with the
middleware through a publish-subscribe API. The mobile compo-
nent of SenSocial manages data sensing from mobile phone sen-
sors so that the users physical context can be acquired. Contextual
data can be mined in either its raw state (e.g. accelerometer x-axis
intensity values), or can be classified to high level inferred states
(e.g. activity classified as “running"), as requested by the over-
lying application developer. The server component of SenSocial
communicates, through specialised plug-ins, with OSNs, and gath-
ers information on the users OSN actions and connections. The key
feature of SenSocial is its ability to manage the sensing of the user’s
physical context once an OSN action is detected, and to couple
the sensed physical context with the OSN-related context. More-
over, SenSocial allows the developer to define sophisticated filters
that will determine the conditions under which the context will be
sensed, the granularity of the acquired data, and a subset of users
that will be involved in the particular data collection task. In ad-
dition, due to its ability to remotely manage sensing, SenSocial al-
lows the context data to be sent to a register application listener that
resides either on a mobile or on a server. Finally, SenSocial exposes
an API for privacy management that sets policies in place so that
only data from pre-approved sensors, and only data of pre-defined
granularity (raw or classified) can be delivered to the application.

3.1 Abstractions
Today, OSNs attract users by allowing them to perform numer-

ous activities on a single platform. At the same time, such an OSN
becomes a great source of collecting data about users’ social ac-
tions. However, the main goal of our work is focused towards the
integration of OSNs and mobile sensing data streams in real time.
It becomes very difficult to trace the users’ OSN actions, transmit
these actions to the relevant client’s mobile where they are coupled
with the physical context data in real time. Refining and manag-
ing the streams of such data are additional challenges of this work.
Therefore, we design and implement the middleware that hides the
complexity and reduces the coding efforts required to implement
such features. The above functionalities of SenSocial are exposed
through an intuitive API, based on the following abstractions:

• Publish-Subscribe Interaction Paradigm. SenSocial middle-
ware’s interaction scheme supports asynchronous communica-
tion with the applications. It is based on the publish-subscribe
paradigm where the middleware acts as the publisher and the
application residing on top of the middleware is the subscriber.
Such an interaction paradigm provides subscribers with the abil-
ity to express their interest in an event or a pattern of events, in
order to be notified subsequently of any event, inferred by the
middleware, that matches their registered interests. In SenSo-
cial, the subscriptions made by applications can be categorized
as topic-based and content-based. Topic-based subscriptions
are the ones that allow the specification of modalities of in-
terest (e.g. user’s location). Whereas, more complex content-
based subscriptions enable the developer to express the interest
in modalities under certain filtering conditions (e.g. get user’s
location when the user posts about football on his/her Facebook
wall).

• Streams. The mobile middleware offers two kinds of streams:
(i) continuous: sensor data (raw or classified to high level de-
scriptions) are sampled periodically with a given rate; (ii) so-
cial event-based: sensor data are pulled from the sensors and
streamed when social activity is detected.
We expose continuous streams to alleviate the effort of obtain-
ing and managing sensor data from the developer. Continu-
ous streams are highly flexible and the developer can config-
ure streamed data granularity, a stream’s duty cycle and sam-
ple rate. Moreover, through filters, discussed later in the text,
the developer can impose conditions under which sampling will
take place.
In case of social event-based streams, sensor data are sampled
only when the middleware traces a new OSN action by the user.
By offering such streams, SenSocial hides the complexity of
obtaining and linking OSN actions with sensor data in real time.
Just like a continuous stream, a social event-based stream can
also be filtered and classified on the mobile. Additionally, any
stream can be transmitted to the central server, where it can be
further merged with streams coming from other mobiles. On
the server, such streams can be filtered with conditions based
on the users’ social network links and geographical location.

• Stream Filters and Aggregators. Filters are used to refine
stream data so that only the information of interest is captured.
Moreover, by restricting sensor sampling and data transmission,
stream filtering on a mobile can reduce the phone’s energy con-
sumption and the data plan usage. The distributed filter is a
concept that allows the configuration of stream filters both on
the mobile application, as well as on the server application. It
consists of a set of conditions where each condition comprises
of a modality, a comparison operator, and a value (specific con-
text). For example, a filter can be set to obtain data from GPS
only when a user is walking. In this case, the filter modality
is physical_activity, the operator is equal, and the
value is walking. The stream that is being filtered is the
GPS stream. Note that an unrelated stream, the accelerome-
ter stream, has to be sensed in order to infer the activity. Filters
can be conditioned on time interval, physical context, and OSN
activities, but need not be conditioned on streams coming from
the same device. Thus, one can create a filter that sends user’s
GPS data only when another user is walking. In this case, the
server component of SenSocial manages the stream by filtering
the user’s GPS stream with respect to the accelerometer stream
that is created on the instance of SenSocial running on the mo-
bile device of another user.
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Figure 3: SenSocial components of mobile client and server-side middleware. The server can control multiple clients; we show a
single client for clarity.

Aggregators manage multiple streams received by the server
by wrapping them into a single aggregated stream irrespective
of the streams’ sources. In an aggregator, data from individ-
ual streams is multiplexed to the same join stream, which can
further be processed as any other stream in the system.

• Multicast Stream. The multicast stream abstracts related streams
of multiple clients into a single entity. The main feature of the
multicast stream is its ability to manage remote data collection
from a large number of clients. Instantiated on the server, the
multicast stream can tap into the information about the geo-
graphic location of the users, or their OSN interconnectivity,
and through a query that takes geo or OSN attributes into ac-
count, select a subgroup of users whose data will be collected.
Furthermore, filters set upon a multicast stream are transpar-
ently distributed to all the users encompassed by the multicast
stream.

3.2 System Components
In Figure 3 we show the components of SenSocial middleware,

their location within the architecture, and types of data that are ex-
changed among the components. The goal of these components is
to efficiently support the the abstractions we explained earlier. The
middleware exposes a concise set of API calls that are sufficient for
controlling these components.

The SenSocial Manager is the core component of the middleware
and represents a point of entry for the overlying application – the
SenSocial Manager exposes registerListener() a method
for registering a stream data listener with the middleware. The lis-
tener has to implement SenSocial Listener and can be a component
in the mobile application layer, or on the server side, in which case
the stream data coming from the mobile are forwarded to the server
where they can be further processed either as an individual stream
or as a part of an aggregated stream.

The SenSocial Manager exposes methods to create and manage
contextual streams. A stream is created by specifying a certain con-
text modality (i.e. location, Bluetooth environment, accelerometer)
and the required granularity of the data (i.e. raw samples or high

level classified data). A filter containing a set of conditions can
be added directly to this stream. The SenSocial Manager passes
the requests for a new sensor stream, along with that stream’s fil-
ter, to Privacy Policy Manager. Here, the request is screened for
compliance with the privacy descriptor that defines the granular-
ity and the type of data that is allowed to be sampled from a user’s
phone. The privacy descriptor comprises of privacy policies. These
can be dynamically defined by the developer or exposed as settings
to the users. Note that, in order to allow the sensing of a stream,
Privacy Policy Manager screens for both the modality required by
the stream and its filtering conditions. If the request is cleared, it
is forwarded to the Sensor Manager that taps into raw sensor data.
As discussed before, the middleware offers two modes for sensor
data streaming: social event-based and continuous. In case of the
former, sensing is triggered by the Trigger Manager located on the
server side of our middleware when a user performs an OSN action
and the sampled sensor data is integrated to the OSN action data.

The data streams are forwarded to the Filter Manager, where
stream filtering takes place in case the stream entails any filters.
Streams whose data satisfies developer-defined filtering conditions
are passed to the registered listener. Additionally, the SenSocial
Manager enables the application to dynamically define the duty cy-
cle and sample rate of a stream by passing a configuration object.

In SenSocial we are interested in supporting large scale integra-
tion of OSN and physical sensor data streams, thus we pay specific
attention to the management of multi-user sensing. This is partic-
ularly important for applications where the set of mobiles whose
data we are interested in changes frequently, as is the case with
location-dependent mobile sensing applications. Such features are
supported through the SenSocial server-side stream creation and
management. Again, the SenSocial Manager (server side) repre-
sents the first point of contact with the server application layer.
It allows stream creation and subscription in a way similar to the
SenSocial Manager (client side). A stream configuration file is
generated by the SenSocial Manager (server side) and the respec-
tive mobile clients are notified to download the configuration file
and merge it with the existing stream file. The Trigger Manager
maintains a controlled communication link between the server and



mobile devices. Triggers can carry either stream configuration in-
formation or signals to start sensing based on an OSN action. The
SenSocial Manager (server side) exposes API calls to create a mul-
ticast stream (i.e. a stream on the given set of users) based on the
users’ geographic location and social network links. As a result,
the incoming streams on the server can originate from numerous
devices and with variable frequencies.

Filter Manager on the server oversees the incoming streams with
respect to the filters defined by the server application. These fil-
ters can include data from multiple users, as streams coming from
one user can be conditioned on data coming from another user (e.g.
report user’s location only when her friends are posting positive
things about her on Facebook). In case of multiple related streams,
Filter Manager ensures that the data are consolidated as an aggre-
gated stream with the help of an Aggregator, that wraps streams
into a single aggregated one, irrespective of the devices that these
streams come from. For any other purpose, filtering included, such
streams can be treated as any plain data stream.

An important feature of the server component is the ability to
dynamically create and destroy streams on the remote clients. The
server keeps track of users’ location and OSN links and can adapt
stream sampling based on the user movement and OSN network
fluctuations. For example, SenSocial supports sensor data gather-
ing from users who are collocated with a specific person. In such
a case, every time the person moves, a new geo-fenced location
stream is created on the mobile devices of all the users who are
currently nearby, and the previously created streams are removed.

4. IMPLEMENTATION
The SenSocial mobile middleware is implemented as an Android

Java library and released as an open-source project1. The server
component consists of a Java library and PHP server-side scripts.
In addition, to tap into OSN data we implement plug-ins for two
popular OSNs: Facebook and Twitter. All the manager compo-
nents – SenSocial, Privacy Policy, Sensor and Trigger Managers –
are implemented as singleton Java classes to secure the uniqueness
of the global state. Also, the factory design pattern is used to cre-
ate object of the classes – Stream, Filter, Aggregator and
MulticastStream – for the ease of access. As far as the im-
plementation of the mobile middleware is concerned, we follow the
best practice of Android programming by ensuring that heavy pro-
cessing tasks are performed on their individual background threads.

Sensor Sampling. Data stream from sensors are accessed via the
Stream class that can be instantiated on a mobile or on the server,
through the SenSocial Manager, that in turn communicates with
the Sensor Manager. To implement Sensor Manager, the SenSo-
cial mobile middleware relies on the third party ESSensorManager
library for adaptive sensing [30].

SenSocial supports all five types of sensor modalities that can
be pulled from the ESSensorManager library: GPS, accelerometer,
microphone, WiFi, and Bluetooth. SenSocial relies on two modes
of sampling provided by ESSensorManager library: one-off sens-
ing and subscription-based sensing. One-off sensing is used for
streams that are conditioned on the OSN action trigger. In this case,
in order to save the energy, sensing is triggered once, remotely,
only if an OSN action is observed. Subscription-based sensing
continuously samples sensor data for the streams that are not con-
ditioned on OSN actions. Note that, if a stream is conditioned on
other modalities then the conditional modalities are sampled con-
tinuously and the stream’s required modality is sampled only when

1https://github.com/AbhinavMehrotra/
SenSocial-Library

the conditions are satisfied. The SenSocial Manager exposes the
API calls to define the duty cycle and sample rate of a stream in a
key-value object. These settings are later passed to the ESSensor-
Manager library, which adjusts the actual sensing parameters.

Remote Stream Management. Streams of sensor data are ac-
cessed through the Stream class that can reside on both mobiles
and the server. If instantiated on the server, a stream transparently
controls sensor sampling on the associated mobile(s). This is per-
formed by encapsulating a stream configuration in an XML file,
which is pushed from the server to mobile devices. Stream config-
uration contains details about the required context modality, gran-
ularity of the required data, filtering conditions, and the identifica-
tion code of the device on which the stream is to be created. Stream
configurations can be remotely created and modified according to
application developer’s requirements. Similarly to a locally man-
aged stream, server-side stream can also be passed a settings key-
value object that defines sensor sampling rate and duty cycle.

To notify the mobile device about a new/modified stream config-
uration, SenSocial uses the Mosquitto broker [10] through SenSo-
cial and Trigger Manager. The Mosquitto broker contacts the mo-
bile via the MQTT protocol. We use MQTT over HTTP protocols
due to the fact that MQTT is based on the push paradigm, thus,
unlike HTTP-based solutions, does not require continuous polling
from the mobile side, resulting in a lower battery consumption.
For example, in the case of downloading the specification of new
streams, the XML definition is received by the MQTTService
class on the mobile, and if needed, a stream filter is downloaded
from the server by the FilterDownloader class. Then, the
FilterMerge class merges this newly downloaded XML file to
the existing set of filter configurations that are stored in the mobile
device as an XML file.

Ensuring Privacy Compliance. Privacy Policy Manager ex-
poses API calls for the developers to define the application’s pri-
vacy policies. These policies can be defined based on the type and
the level of granularity - raw or classified - of sensed contextual
data that will be stored and communicated among the middleware
components. Whenever a stream is created or modified, or the pri-
vacy settings are changed, Privacy Policy Manager is invoked to
compare all the stream configurations with the latest privacy poli-
cies that are stored in the PrivacyPolicyDescriptor file.
These policies can be dynamically defined by the developer or ex-
posed as settings to the users, and restricts the type, as well as the
granularity of sensor data that can be sampled on the mobile de-
vice (i.e., raw samples or high-level classifier output). In case a
stream does not clear this privacy check, it is automatically paused
by the Privacy Policy Manager. Such a stream is moved back to
the working state later when it clears the privacy check according
to the modified privacy policies.

Sensor Data Classification. With respect to the implementation
of the machine learning classifiers, the current version of SenSo-
cial provides a few classifiers that can classify raw sensed data into
higher level context classes. Thus, SenSocial can classify raw ac-
celerometer data into user’s physical activity, such as “still", “walk-
ing" and “running", or infer from the raw microphone data if the
audio environment is “silent" or “not silent". Note that we imple-
mented these classifiers as proofs of concept, and did not focus on
maximizing the classification accuracy, since it was not the focus
of this work. However, the design of the middleware is very flex-
ible in that respect. SenSocial offers the possibility for developers
to integrate their own classifiers with the mobile middleware. The
integration of external classifiers is possible by registering listen-
ers on the mobile application to receive raw sensor data. It is also
possible to add classifiers for data coming from the OSN services.



Integration with OSNs. Accessing OSN data in SenSocial is
enabled via plug-ins for Facebook and Twitter. A mobile user needs
to add the Facebook plug-in to his Facebook profile, so that actions
such as posts, comments and likes are captured and forwarded to
a PHP script on the server. On the other hand, the Twitter plug-in
comprises of PHP files that completely resides on the server and
periodically queries data from the Twitter server for each user that
has authenticated SenSocial via OAuth to access his Twitter data.
In both cases, once the OSN data are received, the SenSocial Man-
ager (server side) ensures that the sensor data are fetched from rel-
evant remote clients. It keeps the list of User instances containing
users’ registration information, Device instances comprising of
the device identification information, and the associated Stream
instances. The relevant client(s) are selected and the Trigger Man-
ager compiles the OSN action and the relevant device information
in a JSON-formatted string passed to the Mosquitto broker that
sends triggers to the selected clients. On receiving such a trigger,
the SenSocial Manager (mobile side) initiates the one-off sensing
for the social event-based streams. The sampled sensor data is cou-
pled with the OSN action data received with the trigger, and deliv-
ered to the registered listeners for the respective streams.

Data Storage and Querying. The server component uses a
MongoDB database [12] to store the information about user reg-
istration, user’s OSN friendship and geographic location informa-
tion. To maintain the updated information about user’s OSN links
(friendship), the server component classifies OSN actions to infer
any change in the OSN. Whereas, the user’s geographic location is
updated periodically at a time interval that can be configured via
the SenSocial Manager (client side). Complex queries can be cre-
ated on the basis of this information, and multiple related streams
can be initiated as a result. The MulticastStream class en-
ables seamless management of streams on multiple devices from
the server. Filters can be instantiated on top of a multicast stream
and distributed via the MQTT broker to all involved devices.

In the example depicted in Figure 2 we show how the above parts
of SenSocial integrate into a fully-functional middleware. First, all
the devices in the system run an application that registers with an
instance of the SenSocial Manager. In addition, the users of the
devices need to authenticate with the SenSocial OSN plug-in so
that the application can access their OSN relationship information.
This information is stored in a MongoDB on the central server. The
server side application queries the database for all the OSN friends
of user A, and creates a MulticastStream instance that ab-
stracts location data streams from the devices that belong to users
C and D. The MQTT broker notifies these users to download an
XML file that describes the modality that is being sensed (loca-
tion) as well as the filtering condition (location equals Paris). Each
of the phones downloads the file and merges it with its Filters
file, after which the Filters file gets checked for the privacy
policy compliance with the PrivacyPolicyDescriptor file
(predefined by the developer). If it complies, the data are periodi-
cally sensed from each of the mobiles and raw GPS coordinates are
classified to a descriptive address, i.e. the name of the city that the
user is in. If the filtering condition is satisfied, meaning a user is lo-
cated in Paris, the data are transmitted to the server. On the server,
a listener within the application processes the data and notifies user
A that user C has arrived to Paris.

5. EVALUATION
In this section we evaluate the performance of the SenSocial plat-

form, mainly focusing on the aspects related to resource efficiency
and system scalability.

Table 1: SenSocial source code details.
Counter Mobile middleware Server component
Java files 77 46
PHP files 0 2

Source code lines 2635 1185

Table 2: Memory footprint for sample SenSocial application
and Google’s Activity Recognition (GAR) application.

Application Heap-size
allowed (MB)

Heap-size
allocated (MB) Objects

SenSocial 13.508 12.342 51419
GAR 12.945 11.126 46210

5.1 Evaluation Settings
We evaluate SenSocial on a Samsung Galaxy N7000 phone with

1 GB of RAM, and a dual-core 1.4GHz ARM Cortex-A9 CPU,
running a clean slate Android 4.0.1 (Ice-cream sandwich) operat-
ing system. We load and run SenSocial as a part of various appli-
cations: from a simple stub application to a purpose-built context-
sensing and content-adaptation applications explained in the Pro-
totype Applications section. We use third-party measurement tools,
such as Count Lines of Code (CLOC) [5], Power-Tutor [46], An-
droid TraceView [4], and Android Dalvik Debug Monitor Server
(DDMS) [2] to quantify the middleware performance.

5.2 Source Code and Memory Footprint
SenSocial is based on two main components, one on the mo-

bile side, and the other the server side. The Android-based mobile
component comprises of 77 Java classes, while the server is imple-
mented by means of 46 Java classes and 2 PHP scripts. We use
CLOC to obtain code count statistics summarized in Table 1.

In the Android OS, paused applications are retained in the phone’s
memory, and the OS maintains the state of the application’s in-
stance. Also, the application process remains attached to the An-
droid window manager for quick retrieval. However, the applica-
tion instance can be destroyed by the system in case of extremely
low memory [1]. Consequently, if an application uses a large amount
of memory, it may cause other applications to be killed. Thus, it is
essential, especially for a middleware platform, to occupy as little
memory space as possible.

We evaluate the memory footprint of a stub application built
on top of SenSocial. The application creates continuous sensor
streams with each of the five supported sensor modalities (i.e. ac-
celerometer, microphone, GPS, WiFi and Bluetooth), and subscribes
to the sensed data by registering a listener to these streams. We
compare the memory footprint of a stub SenSocial application to
the footprint of an application we term Google Activity Recogni-
tion (GAR) that is built on top of the Google’s Activity Recognition
Library API [8]. It streams high-level physical activity information,
obtained through Google Play Services, to the server. The mem-
ory footprint obtained via the Android DDMS tool is shown in Ta-
ble 2. Compared to the stub GAR application, the fully functional
SenSocial application uses only 1.216 MB of extra memory. It is
important to note that the GAR memory footprint does not include
accelerometer sensor sampling, as GAR outsources this function-
ality to Google Play Services. Google Play Services do not reside
in the user space, thus cannot be profiled by DDMS. SenSocial,
instead, by relying on the lightweight SensorManager library, con-
sumes just slightly more memory while delivering a much broader
set of functionalities.
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Figure 4: Average battery charge consumed per sensing cycle.
We show SenSocial with each of the sensor data stream types
and the Google Activity Recognition (GAR) application. The
abbreviations in the figure are: R – Sampling and transmission
of raw sensor data; C – Sampling, classification and transmis-
sion of classified sensor data.

5.3 Energy Management
One of the key challenges for context-aware mobile sensing ap-

plications is their energy use and the resultant battery life impact.
Continuous sensing of GPS for example can lead to a twenty-fold
reduction in the battery lifetime [13]. The total energy consump-
tion depends not only on the type of sensor, but also on the sensor
sampling duty cycle, sensed data processing, and transmission rate,
in case the data is transferred to a server.

We examine the energy consumption of the SenSocial mobile
middleware, and identify the energy requirements of each of the
key tasks that the library performs on the mobile: sensing, data
classification and data transmission. For that, we develop an ap-
plication with a background service instance that samples sensors,
optionally classifies the data, and transmits either raw or classified
data to the server. We also investigate energy requirements of each
of the sensing modalities supported by SenSocial: accelerometer,
microphone, GPS location, Bluetooth and WiFi. Sensing is per-
formed every 60 seconds for each of the streams during an hour
interval. The rate of sensing depends on the modality, and we use
the default sensing configuration values from the ESSensorMan-
ager library [30]. We measure energy consumption with the fre-
quency of 1 second and average the recorded values, in order to
include the extra energy-tails due to the wireless interfaces being
prevented from switching to sleep mode [40].

Figure 4 shows the energy consumed with different sensor streams.
The energy readings were obtained with PowerTutor and are aver-
aged over an hour. As expected, and in accordance to [13], different
sensor modalities are characterized by remarkably different energy
costs. The transmission energy is high for accelerometer data as
it contains a vector of acceleration values for the three axes, sam-
pled every 20 ms for eight seconds, thus, accumulating a significant
amount of raw readings. However, this opens up an opportunity
for energy consumption reduction through classification. Indeed,
classification of raw accelerometer values to a high level activity
description (i.e. “running", “walking", “sitting") halves the total
energy consumption of a SenSocial-based application that uses an
accelerometer stream.

To put the results in a perspective, we also investigate the energy
consumption of the GAR application. Note that GAR relies on
GooglePlayServices for activity sensing and inference, and merely

Table 3: Time delay in receiving OSN notifications.
Notification

type Average time [s] Standard
deviation

OSN to Server 46.466 2.768
OSN to Mobile 55.388 2.495

Table 4: Average battery consumption with varying number of
OSN actions (within 20 minute time period) that trigger remote
sampling of all five supported sensor modalities.

OSN
actions 1 2 3 4 5 6 7

Charge
consumed

[µAH]
51.7 97.1 142.5 187.8 233.2 278.5 324.3

establishes links with GooglePlayServices. Still, the energy con-
sumption is only 25% lower than in the case of classified SenSocial
data streaming. Note, however, that in the above analysis we use
simple classifiers to get high-level data. More sophisticated classi-
fication is likely to consume more energy; this can be considered
as a baseline in order to estimate the energy performance.

5.4 Time Delay
SenSocial can successfully capture the relationship between OSN

actions and a user’s context only if the OSN-based triggering initi-
ates mobile sensor sampling as soon as an action is performed on
the OSN. We measure the delay between the time of an OSN activ-
ity and the time when the mobile starts sampling. OSN-based trig-
gering also involves centralized server querying, thus we measure
two values: i) time needed for an OSN action to be reacted upon on
the server, and ii) time for an OSN action to trigger sensing on the
mobile. Note that the latter includes server-side querying.

The measurements were taken when the mobile was connected
to an uncongested WiFi network, in order to avoid the effects of
poor connectivity on the measured delay. The server is connected
to the public Internet via a high speed link, and does not host any
other publicly available services. To account for the time difference
between the SenSocial server, where a part of the measurement app
resides, and the Facebook server, where the OSN actions take place,
we built a mobile application on top of the middleware that regis-
tered the time when a post is made and a notification about the post
is received. The results for the time delay to receive the OSN notifi-
cations include the transmission time to make a post. Table 3 shows
the response delay averaged over 50 OSN actions. The OSN noti-
fications reach the SenSocial server in 47 seconds on average, and
it takes 56 seconds to reach the mobile. The small difference be-
tween the OSN to server and OSN to mobile delays indicates that
the SenSocial notification mechanism is very efficient as it takes
only nine seconds to process the event and notify a mobile. The
overall delay is limited by the time Facebook takes to notify SenSo-
cial about OSN actions. This delay varies for different OSNs: our
Twitter plugin, which actively scans for new tweets, allows arbi-
trarily short delay.

5.5 System Scalability
In this section we discuss the scalability of our middleware with

respect to the number of active sensor streams, the complexity of
stream filters, the number of users and the OSN actions.

Impact of Multiple Streams. The increasing number of sensor
streams initiated by a mobile application may influence the mem-
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Figure 5: CPU load with increasing number of sensor data
streams. Streams are either consumed within the mobile (lo-
cal streams) or transmitted to the server (server streams).

ory consumption and CPU load. We measure these factors in an
application that iteratively increases the number of active streams
until it crashes. The measurements of CPU load and memory con-
sumption were carried out using PowerTutor and DDMS respec-
tively. We find that the number of streams does not affect the mem-
ory consumption of the application. However, the increasing num-
ber of streams puts more load on the CPU. We experiment with
server streams which include mobile sensor data transmitted to the
centralized server and local streams (i.e., streams of data that are
consumed locally on the mobile by an application layer listener).
As shown in Figure 5, the CPU load grows significantly only for
streams transmitted to the server. Still, the CPU load is less than
10% even with five streams (i.e., the number of modalities sup-
ported by SenSocial).

Impact of Filter Complexity. SenSocial stream filters allow so-
phisticated pruning so that only the information we are interested in
is streamed to the application. Filters of a certain sensor data stream
can be conditioned upon the value of different modalities. For ex-
ample, we can request a stream of microphone data that will be
sampled only when the accelerometer data are classified as “walk-
ing". Filtering can also include conditions based on the user’s OSN
activity. In such cases, the stream is transmitted only when the user
performs a certain OSN action, e.g. posts, comments or “likes" a
page. The use of filtering rules can increase energy efficiency of
sensor streaming as the streams are transmitted only when the con-
ditions are satisfied. At the same time, sensing orthogonal modal-
ities and performing complex machine learning classification upon
the data consumes energy through increased CPU load. However,
the use of filtering rules can also help to save battery by sampling
energy-costly sensors only on satisfaction of the conditions based
on a less energy consuming sensor. For example, sampling location
via GPS is far more demanding in terms of energy than sampling
the accelerometer data. Therefore, it might be worth creating a fil-
ter that allows location data sampling only if the accelerometer data
indicates movement.

Impact of Multiple Users. SenSocial is highly distributed and
each additional user merely adds the energy and processing cost of
a lightweight local library to his own mobile phone. With more
users, the centralized server has to manage notifications to a larger
number of end devices. In our implementation, the server relies
on the MQTT broker to broadcast notification messages to mobile
clients. Due to the broadcast nature of the transmission, the actual
number of recipients does not impact server resources. The server
component also stores the OSN graphs, and the distributed stream

Figure 6: Screenshot of Facebook Sensor Map application.
Each marker corresponds to a user’s OSN action, and merges
geographic, audio and physical information with the type and
content of the OSN action.

configurations along with the reference of relevant listeners, in a
MongoDB database. As a non-relational database, MongoDB al-
lows simple storage of large unstructured datasets. However, due
to its non-relational nature querying from MongoDB can be inef-
ficient. This limitation can be addressed by building indices for
commonly used queries. In addition, MongoDB natively supports
geospatial querying. This translates to fast return of nearby users
or those located within a certain area.

Impact of the Number of OSN Activities. We evaluate the abil-
ity of SenSocial to cope with a burst of OSN activity that triggers
remote sensing on mobiles. We create a mobile application that
samples and transmits to the server data from all five supported
sensors, and iteratively increases the number of OSN actions in a
20 minute time window. With PowerTutor we measure the energy
consumption in each time window. Table 4 shows the energy con-
sumption for up to seven OSN actions in a 20 minute window which
is the maximum, as each trigger takes approximately 120 seconds
to complete (60 seconds for sampling all the sensor and 60 seconds
for receiving the trigger from the Facebook). We see that the en-
ergy consumption increases nearly linearly. Due to the finite time
for trigger completion that bounds the energy consumed in a unit
of time, we conclude that the scalability of SenSocial is not limited
by the number of OSN actions.

6. PROTOTYPE APPLICATIONS
In order to show the effectiveness of the abstractions implemented

by the middleware, in this section we discuss how the SenSocial
API can ease the development of two prototype applications. The
first application, Facebook Sensor Map, demonstrates SenSocial’s
ability to trace users’ social activity on Facebook and link it to the
physical context data acquired through mobile sensing in real-time.
This information is then displayed on a map. The second applica-
tion is ConWeb, a contextual Web browser that dynamically modi-
fies rendering and content of a Web page on the server according to
users momentary context extracted from the sensors via SenSocial.
In other words, SenSocial starts collecting sensor data on the mo-
bile and transmits this information stream to the Web server when
a page is requested by the user. The Web server then dynamically
generates a page according to the contextual information that has
been received from the device. In this paper we examine Facebook
Sensor Map and ConWeb purely as demonstrators of SenSocial’s
utility for mobile social sensing application development.



SenSocialManager manager = SenSocialManager.getSenSocialManager(getApplicationContext());
String uid = manager.getUserId();
User user = manager.getUser(uid);
Stream s1 = user.getDevice().getStream(SensorUtils.Sensor_Type_Accelerometer, "classified");
Stream s2 = user.getDevice().getStream(SensorUtils.Sensor_Type_Microphone, "classified");
Stream s3 = user.getDevice().getStream(SensorUtils.Sensor_Type_Location, "raw");
/*----------- Create list of filter condition(s) ----------------*/
ArrayList<Condition> conditions = new ArrayList<Condition>();
Condition c = new Condition(ModalityType.facebook_activity, Operator.equals, ModalityValue.active);
conditions.add(c);
/*----------- Add condition list to the filter -----------*/
Filter filter = new Filter(conditions);
/*----------- Set filter to the streams -----------*/
s1 = s1.setFilter(filter);
s2 = s2.setFilter(filter);
s3 = s3.setFilter(filter);

Figure 7: Code snippet of the implementation of the Facebook Sensor Map mobile application using the primitives provided by the
SenSocial middleware.

6.1 Facebook Sensor Map
To demonstrate the potential of merging OSN and physically

sensed information we develop Facebook Sensor Map. This ap-
plication, screenshot of which we show in Figure 6, displays infor-
mation on a geographic map about an individual and his/her social
circle, including Facebook activity with the associated contextual
data streams extracted from the mobile phone sensors.

Facebook Sensor Map comprises of three parts: a mobile-side
application built on top of SenSocial mobile client, a server-side
application built on top of SenSocial and a Facebook application
added to the user’s Facebook profile. The mobile part incorporates
FacebookSensorMapService, a long-running background ser-
vice that uses SenSocial to subscribe to the streams of sensor data
filtered on the user’s Facebook activity.

The Facebook application detects OSN activities and notifies the
FacebookReceiver script, hosted on the server, every time a
Facebook activity (such as posting a status) occurs. Since Face-
book activities get captured directly by the Facebook application,
Facebook Sensor Map works even if the user interacts with Face-
book from another device. Once a new OSN activity is detected,
the server notifies FacebookSensorMapService, via a trig-
ger from the MQTT broker, to sample the current physical context
of the user.

In addition, the trigger includes the JSON-formatted information
with the content of the OSN action, e.g. the text of a Facebook
post. Captured sensor and OSN data are stored locally in an SQLite
database running on the mobile, and displayed on a Google map
instantiated within the Facebook Sensor Map mobile application.
Moreover, the data are sent to the server where the information
is stored in a database, allowing complex OSN and context-based
multiuser querying. The information stored in the database is then
presented as a set of navigable maps that are updated in real-time.

Figure 7 presents the code snippet from the Facebook Sensor
Map mobile application that is implemented inside the background
service. We create three streams s1, s2 and s3 of classified ac-
celerometer data, classified microphone data and raw location data
respectively. To integrate these streams with Facebook action data,
we set a filter on all the streams. This filter holds a condition
where the modality-type is facebook-activity, the operator
is equal, and the modality-value is active. This condition per-
mits the middleware to sample sensor data only when the user per-

forms an OSN action. The code snippet uses SenSocial’s Stream
and Filter, to obtain refined streams of integrated physical con-
text and OSN action data. It subscribes to the streams of required
physical context, and requests to sample the stream data only when
the user performs a Facebook activity and couple this activity con-
tent with the sampled physical context.

6.2 ConWeb – Contextual Web Browser
World Wide Web content has been traditionally served in a user’s

physical context agnostic way. In the last decade researchers have
focused on the problem of adapting the content layout to better suit
mobile devices where screen real-estate is limited [27], and to adapt
media files to low-connectivity conditions [21]. Iwata et al. devel-
oped a system that adapts displayed content depending on user’s
mobility [25], while applications, such as Google search, adapt the
content to the location. Despite these advances, in our opinion, the
concept of context-aware browsing is not fully exploited yet.

ConWeb is an application, built on top of the SenSocial middle-
ware, that delivers dynamically generated Web pages based on the
context sensed by the mobile devices and activities perform by the
users’ on the OSNs. ConWeb supports run-time adaptation accord-
ing to the current physical context and social (OSN actions) data of
a user: a page is automatically refreshed every T seconds in order
to download a version of the Web page from the Web server adapted
to the most recent context information of the user. The value T can
be set by the user. Thus, ConWeb enables highly adaptable brows-
ing in which page content, as well as appearance are modifiable.
Pages served with ConWeb can adapt not only to the physical con-
tent, e.g., by displaying higher contrast colors when it is sunny and
a user is outside, but also to the social context, e.g., by showing gift
suggestions to a user who is about to attend a birthday, as indicated
by information automatically retrieved from OSNs. We present
this application to demonstrate SenSocial’s potential to remotely
manage the streams of integrated physical context and social (OSN
actions) data. The application relies on SenSocial’s streams to ab-
stract the means of obtaining physical and social context data from
the users’ mobile phones in real time.

Figure 8 illustrates the architecture of the ConWeb system. Con-
Web consist of the following components: mobile application built
on top of SenSocial mobile middleware, Web server to host Web
pages, server application built on top of the SenSocial server com-
ponent, and OSN plug-in (optional). The ConWeb application can
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Figure 8: ConWeb architecture.

be configured to receive data streams only related to physical con-
text or the OSN actions associated to it as well. The OSN plug-in
is required only in the case of latter.

The ConWeb mobile application comprises of a Web browser
and an Android background service. The Web browser uses the
WebView class provided by the Android API to access and display
Web pages. This user identifier helps in linking the user with their
latest contextual data stored in the database. When a Web page is
requested through the ConWeb browser, a background service, im-
plemented by the ConWebService class, starts transmitting the
context (physical context or the OSN action integrated with physi-
cal context) data to the server in real time. ConWeb can be dynam-
ically configured to present Web pages based on the context chosen
by the user. In such a case, ConWeb’s server application leverages
SenSocial’s remote stream management to dynamically destroy the
current SenSocial’s streams and then subscribe to the streams of
relevant context data. Additionally, the streams remain active until
the ConWeb browser is running, and goes to the paused state once
the ConWeb browser is killed by the user.

To generate personalized Web pages for a user, the SenSocial
server component directs the incoming data streams to the database
where it overwrites the latest context information of the relevant
user. Once the server receives a Web page request, the ConWeb
server application extracts the user identification code from the re-
quest and modifies the page attributes according to the relevant
user’s context information. Finally, the “context-aware Web pages”
are transmitted back to the ConWeb browser.

6.3 Programming Effort Evaluation
We now quantify the benefits of using SenSocial for OSN-aware

mobile sensing application development. Specifically, we analyze
SenSocial’s potential to reduce application programming effort by
implementing the same applications with and without SenSocial.

In Table 5 we show the number of lines of code (LOC) needed
for the implementation of ConWeb and the Facebook Sensor Map
application both with and without using SenSocial. All the mea-
surements were conducted using the CLOC tool. For a fair measure
of programming efforts between the two versions of both applica-
tions, we use a third-party sensing library (ESSensorManager [30])
in both cases, and do not include the library in the LOC computa-
tion. In total, SenSocial reduces the LOC nine times, from 3423 to
316 in the case of Facebook Sensor Map, and twenty four times,
from 3223 to 130 LOC, in the case of the ConWeb application.

7. LIMITATIONS
The main limitation of the current implementation of SenSocial

is its inability to run as a single instance on a device, while sup-

Table 5: Lines of code (LOC) programming effort comparison
(M – mobile app, S – server app).

Application name Files LOC
Facebook Sensor Map (M) (with SenSocial) 8 103
Facebook Sensor Map (S) (with SenSocial) 2 213

Facebook Sensor Map (M) (without SenSocial) 68 2419
Facebook Sensor Map (S) (without SenSocial) 42 1004

ConWeb (M) (with SenSocial) 3 23
ConWeb (S) (with SenSocial) 1 107

ConWeb (M) (without SenSocial) 61 2278
ConWeb (S) (without SenSocial) 38 945

porting multiple overlaying concurrent applications. The limitation
stems from the fact that SenSocial runs in the user space of the OS,
and is imported as a library to each individual application that uses
it. Should the middleware run as a kernel service, such as Google
Play Service, multiple applications could concurrently subscribe
to a single middleware service. In the user space, we could still
develop and deploy a stand-alone SenSocial service, albeit with a
high chance of the service being terminated by the OS, and interact
with it via Android Intent passing [3]. In this model, however, the
user is required to download and run this service beforehand. With-
out being tied to a particular application, this service would require
access to all the sensors that the overlaying application might use,
and would be running in the background at all times. However,
such a service would resemble malware, and users would likely be
reluctant to install it.

Another limitation of the middleware is that the time needed to
complete successive sensor sampling cycles on the mobile limits
the granularity at which the OSN action - context pairs can be
captured. In case a user will perform more than one OSN action
between two sampling cycles, the contextual data that were pre-
viously sampled will be mapped to these OSN actions. This is a
trade-off between accuracy and energy consumption: continuous
sensing would be impractical with respect to the actual usability of
the system for a final user. In fact, the impact on the battery usage
has to be minimal.

8. RELATED WORK
Research in the area of context-aware computing has gained pop-

ularity with a dramatic pace. Built in accelerometers, camera, mi-
crophone, and GPS sensors have been used as a basis of numer-
ous applications covering a wide range of topics including environ-
ment monitoring [35], transport [9], health monitoring [28], stress
detection [32], behavior intervention [29], social psychology stud-
ies [38] and many others. However, the popularity of smartphone
sensing research lead to a great deal of squandered effort as ev-
ery project has been built from the ground. Researchers proposed
several middleware systems that aim to relieve developers from the
burden of interacting and managing low-level sensors, delivering
energy-efficient sensing on battery-constrained mobile phones, and
ensuring the privacy compliances. Energy Efficient Mobile Sens-
ing System (EEMSS) [44], Jigsaw [33] and Acquisitional Context
Engine (ACE) [36] are examples of the middleware systems that fo-
cused on the energy efficient sensing. AnonySense [20], CITA [39],
and Pogo [17] focused on the privacy compliances.

Later, the paradigm shifted towards sophisticated sensor data
queries and the remote configuration of the sensors. The idea was
to support data collection from a geographically limited area and/or
within a certain time interval. BubbleSensing [31] supports geo-



graphic filter-based queries, enabling applications that, for exam-
ple, sample a phone’s microphone every time a user visits a certain
location. Similar functionalities are provided by APISense [24],
a middleware that also supports temporal querying and just like
Funf [7] allows the remote configuration of sensor settings and data
collection behavior. SenSocial supports geographic and temporal
queries, as well as queries that are based on an online social net-
work graph. Moreover, SenSocial remote stream management is
not limited to sensing parameter reconfiguration, but also supports
dynamic sensor stream creation and destruction.

All the above work is geared towards the collection of data via
in-built mobile sensors, overlooking a rich set of information that
can be mined from a user’s social environment. Mobile Social Net-
working (MSN) relies on mobile sensing to dynamically determine
social communities, and harness this knowledge for applications
ranging from delay-tolerant routing to friend recommendation sys-
tems [15]. Examples of MSN middleware include the SAMOA
framework [16], the MobiSoC middleware platform [23], Mobi-
Clique [37], and Yarta [42]. Communities in these solutions are de-
tected through user’s contacts, visits to the same place, or through
joint expressed interests. While some of the middleware taps into
OSNs [42, 37], none of these solutions considers OSNs as a live
source of contextual data comparable to a physical mobile sensor.
SocialFusion [14], comes closes to that as it treats OSN data as yet
another sensing modality and enables context inference built upon
the fusion of sensor and social data. SenSocial shares the above
idea of SocialFusion, yet improves it by considering dynamic user-
created data – user’s post, likes and comments – as they flow in
the OSN. At the same time through OSN-triggered remote sensing
SenSocial allows closer binding of the physical and OSN context.
In addition, SenSocial supports dynamic remote sensor data query-
ing over the user OSN and geographic context.

Recently, a number of commercial applications has been built
on top of online social networking and mobile sensing. Google
Latitude, Facebook Places and Foursquare are some of the exam-
ples. These applications themselves do not expose a middleware
API, nor enable sophisticated querying of mobile sensor data over
a geographically bounded or OSN-defined group of users. How-
ever, their popularity hints the potential of SenSocial to revolution-
ize mobile sensing applications. All of the above applications use
simple location sensing to augment OSN services. SenSocial en-
ables further integration of multiple aspects of the physical con-
text, sensed over a large number of carefully selected mobiles, and
OSNs. Moreover, OSNs can be used not only as a source of data,
but also as a controller of data sensing. We believe that both current
and future mobile social sensing applications can benefit from such
tightly bound rich context information.

9. CONCLUSIONS
In this paper we have presented the design, implementation and

evaluation of SenSocial, a middleware for the integration of online
social networks and mobile sensing data streams, designed to sim-
plify the implementation of richer ubiquitous computing applica-
tions. SenSocial fuses user’s OSN actions and sensed context data
streams, and enables a join consideration of contextual data coming
from a large number of geographically or OSN-related users.

SenSocial design involved the definition of key abstractions we
used for data handling. We opted for streams as they capture the
continuously changing behavior of both physical sensor data, such
as user’s location, as well as OSN data, such as a Twitter feed.
We then developed filters that enable the extraction of the data
of interest from a stream. Through publish-subscribe interaction,
SenSocial delivers filtered information to the application. We de-

vised components such as the SenSocial, Filter, Trigger, and Sen-
sor Manager to consolidate the above abstractions into a functional
middleware. The middleware is distributed over a server and multi-
ple clients, so that the direct access to the sensor data and on-device
filtering is supported. However, the server side of SenSocial sup-
ports remote data stream management, as well as OSN action-based
remote sensing triggering. The practicality of the SenSocial design
was demonstrated through a full-fledged implementation, which in-
cludes an Android client middleware, Java-based server middle-
ware, interaction with MongoDB database, MQTT triggering and,
Facebook and Twitter OSN plug-ins. Through micro-benchmarks
we showed that SenSocial manages mobile and OSN-sensing in a
resource-efficient and scalable manner. Two pilot applications –
Facebook Sensor Map and ConWeb – demonstrate that SenSocial
reduces the amount of coding effort up to 24 times.

As future work, we plan to develop components, including text
mining tools, that can process data coming from online social net-
works. In particular, our plan is to develop classifiers that are able
to extract OSN post topics and emotional states of the individuals,
and link them to the users’ physical context. Moreover, we plan to
develop machine learning algorithms that exploit the linked infor-
mation provided by the SenSocial middleware, such as the associa-
tion between sensor readings and social activities, and infer higher
level descriptors of human behavior, such as the user’s health state.
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