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ABSTRACT
In recent years, numerous studies have explored the use of machine
learning algorithms for supporting applications in social and clini-
cal psychology. In particular, there is an increasing prevalence of
smartphone-based techniques for collecting data through embed-
ded sensors and efficient in-situ questionnaires. Models are then
built to explore the patterns between these data types.

In this paper, we study the application of machine learning for
the task of predicting mental states of adverse valence, based on
the Photographic Affect Meter data. We present a technique for
daily aggregation, which is designed to detect significant negative
events. A variety of features is used as input, including GPS-based
metrics and features assessing social interactions, sleep and phone
usage. Experimental evidence is presented, which suggests that
machine learning algorithms could successfully be employed for
such a prediction task.
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1 INTRODUCTION
Today’s mobile phones and wearables have become highly personal
devices able to assist us in a variety of day-to-day situations. They
feature sophisticated sensors capable of capturing different types of
contextual information such as location, movement, audio environ-
ment, proximity to other objects, collocation with other devices and
many others [3, 5, 10, 15]. Recent studies have demonstrated the
potential of exploiting mobile sensing data to learn and, potentially,
predict users’ mood and well-being [1, 4, 11, 12, 21, 23, 25]. Indeed,
smartphones and wearables are increasingly seen as very powerful
tools for research in social and clinical psychology [17]. A variety of
modalities has been used as features for building machine learning
(ML) models for this class of applications. In particular, mobility
data have been shown to be very promising for effectively training
such prediction models [4, 16, 23]. More recent approaches in the
field include the usage of photos-based mood questionnaires and
exploring potential mechanisms for sending feedback to the user
[2, 6, 7, 20].

In this study, we consider the use of the Photographic Affect
Meter (PAM) [19] as a quantitative indicator of users’ mood. PAM
provides an alternative to Likert-scale-based verbal questionnaires
by presenting users with a series of photographs and asking them
to pick the one that best captures their current mood. Being a
simple and quick one-item questionnaire, the PAM test is a good
example of Ecological Momentary Assessment (EMA) [18], whereby
the participants are assessed at opportune moments during their
normal routines, so as to capture more genuine mood phenomena.

Following research on human affect [22, 24], instant mood in the
PAM inventory is conceptualized as a two-dimensional phenome-
non characterized by “valence”, or quality of feeling, and “arousal”,
or degree of activation. A range of values for these two independent
dimensions is considered possible, forming a two-dimensional grid.
In particular, valence can be positive or negative, indicating the
quality of feeling, and arousal can be high or low, indicating the
level of energy. A four-by-four grid is used in the PAM inventory
to cover this space. Figure 1 (a) provides an illustration of the PAM
questionnaire, with the 16 photos arranged on the grid. Figure 1
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(b) is a response histogram for our dataset, with the valence and
arousal dimensions explicitly labelled.

We decompose the PAM score, focusing on the valence dimen-
sion only, and develop a measure for assessing daily well-being,
termed the Adverse Valence Index (AV index). The aim of the analy-
sis presented in this work is to predict the value of the AV index
for a particular user on a specific day, using a variety of daily input
features. To evaluate our approach, we use the public version of
the StudentLife dataset [26] that contains rich multimodal data,
collected about 49 student participants over >10 weeks, covering
a single academic term at Dartmouth College. The dataset offers
information related to a variety of dimensions such as physical
activity, mobility, social interactions, phone usage and others. In
this study, both self-reported and objectively measured data types
are harnessed to form the set of features.

Three popular MLmodels are then trained on the dataset to show
modest evidence of learning despite the limited size of data, the
complexity of the learning task, and numerous potential sources
of noise. An additional contribution of this work consists in the
proposal for a time-frame that should be chosen for the calculation
of the features, given the fact that PAM is a testing tool concerned
with instant mood.

2 THE PAM DATASET
The StudentLife dataset contains ∼9000 individual PAM responses,
with the PAM questionnaire being sent to students typically 1-5
times per day. The photos the recipients receive (chosen from a
curated set) are always arranged within the two-dimensional grid
of valence and arousal, each measured on a scale of 4 units. As
the first step in our procedure for daily aggregation, the variation
in per-user reporting baseline is considered. Figure 1 (c) plots the
mean reported arousal and valence per participant, together with
error bars of 2 standard deviation (2σ ) total length, with the scores
translated to a 0-4 scale for clarity of presentation. It is observed
that participants vary noticeably in terms of the average valence
and arousal they report.

We consider the valence dimension to be the more relevant
one for health applications. Previous work [16] has demonstrated
the potential for treating the stress level prediction problem as a
three-class classification task, based on the per-user median level
of stress. In our case, such a transformation yields a very peaked
distribution (>60% weight in the middle category) that is difficult
to model. Instead, we convert the problem into a two-class classifi-
cation task by introducing the AV index. Designed specifically to
indicate adversely negative mental events, which we think is the
most clinically important aspect of the PAM score, the AV index is
defined to equal 1 for days with at least one below-1σ valence report
and 0 otherwise. A fractional AV index value can be interpreted as
the probability of a user encountering adverse valence (AV) on a
particular day. It is worth noting that even a single strongly negative
AV experience can potentially have a lingering quality, affecting
the user over the time-frame of the day. With this transformation,
the dataset is balanced, with the AV index equalling 1 in ∼60% of
the cases. For 3 users, even the lowest valence score is within the
1σ range; they are excluded from the analysis.

(a)

(b)

(c)

Figure 1: (a) A sample instance of the PAM questionnaire
on a participant’s phone screen. Reproduced with permis-
sion from the creators of the PAM test [19]. (b) A histogram
of the PAM responses found in the StudentLife dataset [26].
Both the valence and the arousal dimensions are shown. (c)
Plotting the per-user mean valence and arousal, along with
error bars of 2 standard deviation total length.
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Figure 2: Linking the students’ PAM responses to their stress
EMAs within the same hour. The Likert scale stress re-
sponses have been re-classified after per-user median sub-
traction.

Another important measure of psychological well-being to be
found in the StudentLife dataset is students’ reports on their level
of stress on a 5-item Likert scale (∼2000 in total). Given the relative
novelty of PAM, it is interesting to link these two types of mood
reporting to offer further insight into the PAM inventory. Following
previous research [16], the stress reports are considered after per-
user median subtraction, grouping them into three classes. For each
user’s stress responses, we search for any PAM reports occurring
within the same clock hour, averaging in the case that several
responses are retrieved. Figure 2 shows the results of this analysis.
Stress is generally interpreted to be a mental state of negative
valence and high arousal. The prevalence of PAM responses in
the top-right quadrant for the case of above-median stress gives
support to this.

Considering the results presented in Figure 1(b), it appears that
adverse valence in this particular dataset would typically be a high-
arousal, stress-like state, rather than a low-arousal state more sug-
gestive of depression. Moreover, the PAM response that occurs most
often is a tile associated with anger or annoyance. It is interesting to
note that even in low-stress situations this tile has the highest rate
of response (see Figure 2). We were not able to collect any evidence
for explaining this result. A possible, yet unproven, hypothesis is
that students would simply report dislike towards being interrupted
by the PAM questionnaire. If true, this would represent a source of
noise in the PAM inventory that would need addressing in future
research.

3 APPROACH
Taking the day as the unit of time, features of different kinds are
aggregated for the task of AV index prediction. Based on the recent
literature [4, 13, 14], we add 7 GPS-based metrics: 1) total distance
covered, 2) maximum 2-point separation, 3) number of different
places visited by per-user tiled area grid approximation, 4) differ-
ence in sequence of tiles covered, compared to previous day, 5)
distance entropy, 6) number of non-routine clusters visited, 7) time
spent on non-routine tiles. A selection has been made from the
features proposed in previous studies in order to retain the met-
rics that least correlate with one another. The calculation of these
metrics follows the steps outlined in the publications cited. We use
a 50-metre radius for the DBSCAN clustering algorithm to obtain
routine clusters for individuals, and tiles of area 700m2 are used for
the tiles approximation.

The self-reported corpus of the StudentLife dataset is made use
of for features about sociability and sleep. These features include:
8) number of people the user has been in contact with on the
day (face-to-face, phone, internet), 9) hours slept, 10) quality of
sleep. Moreover, the objective sensing data are used to obtain: 11)
total duration of conversations recorded on the day, 12) number of
conversations registered by the sensors on the day 13) total duration
for which the mobile phone has been locked for significant periods
(>1 hour), 14) number of significant (>1 hour) phone lock periods.
Features 8-14 are chosen as easily interpretable factors under the
participant’s own control. Other potentially interesting features in
the dataset, such as self-reported exercise time and walking time,
have been omitted due to lower response rates.
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(a) (b)

Figure 3: (a) Scatter plot matrix for the seven GPS-based features (features 1-7), after per-user normalization. (b) Scatter plot
matrix for the seven actionable features (features 8-14), after per-user normalization. To illustrate temporary variation, the
day of response is included as the final row/column in both panels.

An illustration of these features and their relationships, after
per-user standardization, is provided in Figure 3 and also in the
Appendix, where numeric pairwise correlation figures are given.
It is interesting to note, for example, that sleep quality correlates
negatively with sleep duration, and that self-reported sociability
(feature 8) shows little correlation with the objective conversations-
related features (features 11, 12). The day of response has been
added as a “feature” here to illustrate patterns of temporary evolu-
tion. For example, there appears to be a pattern of increase in phone
usage with time. As the term progresses, students also appear to be
spending less time on conversations. All the GPS metrics indicate
a small but consistently negative correlation with the day of the
term.

A slight decrease in the average AV index with progressing
weeks can also be noticed in the dataset, which is likely to be
related to the dynamics of the academic term [26]. Accordingly,
we introduce a temporal feature: 15) one-hot indicator for the first
half of the term. No major variation is found between weekdays
and weekends. Finally, to go beyond the treatment of each day’s
mood as an independent event, we add the user’s AV index from
the previous day and that of the day before as two more features.
Consequently, in our analysis, 17 features in total are explored.

Assuming perfect sensor functioning and user responsiveness,
collecting daily readings from 49 users over slightly more than 10
weeks would result in a dataset of ∼3500 points. Because of exclud-
ing some of the users and due to the sparse nature of some of the
measurement types, we are able to construct a dataset of <1600

points. In merging the different feature types, missing entries have
sometimes been replaced with the population mean (0 for standard-
ised features, 0.6 for previous days’ AV index). There is a trade-off
between being able to build a larger dataset, on the one hand, and
introducing too much noise, on the other, by “interpolating" the
data as described. However, given the uneven nature of datasets
involving human participants, the deployment of some technique
for interpolation, at least in parts, seems almost unavoidable.

4 EVALUATION
The results of our experimental evaluation are now presented. We
use three algorithms of increasing complexity: logistic regression,
the linear support vector classifier and a neural network model to
explore non-linear dependencies. All three models are compared
against the baseline of a features-blind classifier.

The logistic regressionmodel and the linear support vector classi-
fier are implemented and trained using standard packages in Scikit-
learn. In the case of the support vector classifier, an optimization of
validation accuracy with respect to the penalty parameter C used
by Scikit-learn is performed. As far as the neural network model is
concerned, we build a network made of 2 fully-connected hidden
layers in addition to the input and output layers. The two hidden
layers are made of 50 nodes each and use the tanh activation func-
tion, batch normalization, and drop-out regularization of rate 0.3.
The output layer uses the so f tmax activation function, with batch
normalization applied, and has two output nodes corresponding to
the two values of the AV index. It is found with the current dataset
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Table 1: Performance metrics for modelling the AV index

Mode classifier Neural network Linear SVC Logistic regression

Accuracy 0.57 0.66(2) 0.66(2) 0.66(2)
Precision 0.57 0.67(1) 0.68(1) 0.69(2)
Recall 1 0.81(4) 0.74(3) 0.76(4)

that a range of neural-network architectures (varying the number
of layers and the number of nodes) yields a similar result. In addi-
tion to drop-out regularization, early stopping is employed (setting
patience = 4), based on the validation loss. The network is trained
using categorical cross-entropy loss and the Adam optimizer [9].

Table 1 presents the results of the prediction task using our ML
models. Given the balanced nature of the two classes, accuracy is
treated as the main performance metric. We employ a stratified
5-fold split for performance evaluation and the results in Table 1
provide the 1σ error computed across the folds. As the baseline, the
“Mode classifier" is used, which guesses the most frequent category
(AV index of 1) irrespective of the input feature values.

As seen in Table 1, all threeMLmodels show similar performance,
outperforming the Mode classifier baseline and showing modest
evidence of learning. Given the limited amount of data (<1600
points), the fact that the neural network is unable to outperform
the more basic models is not surprising. Rather, it offers evidence
that appropriate regularisation has been deployed.

So far as judgements on the relative importance of the feature
types can be made, we find tentative evidence, by experimenting
with feature removal, of the temporal features (features 15-17) being
the most important in our prediction task, with the GPSmetrics (fea-
tures 1-7) and the actionable features (features 8-14) sharing a joint
second place. One possible explanation could be that the effects
due to the temporal features are less affected by user heterogeneity
and therefore less likely to be averaged out when many individu-
als are considered in a single dataset. These are early hypotheses,
however, which would need further justification in the context of
larger datasets and perhaps also more personalised models [8].

5 CONCLUSION
We have presented an evaluation of the use of ML algorithms for
predicting the Adverse Valence Index (AV index), as derived from
the Photographic Affect Meter, using a variety of behavioural and
temporal features. We have evaluated our approach using the Stu-
dentLife dataset. Experimental results illustrating the potential of
ML algorithms for such a prediction task have been discussed.

The findings presented in this study add to the evidence that
information elicited from mobile phones can be exploited to predict
human mental state. We hope that our work would encourage
further research in social and behavioural science.

ACKNOWLEDGMENTS
This work was supported by The Alan Turing Institute under the
EPSRC grant EP/N510129/1. This work was also supported in part
through the award of a DPhil studentship from the Department
of Computer Science at the University of Oxford as part of its
contribution to the EPSRC SOCIAMProject EP/J017728/2.Wewould

like to thank the authors of the StudentLife dataset for making it
available for the research community.

REFERENCES
[1] Jorge Alvarez-Lozano, Venet Osmani, Oscar Mayora, Mads Frost, Jakob Bardram,

Maria Faurholt-Jepsen, and Lars Vedel Kessing. 2014. Tell me your apps and I
will tell you your mood: correlation of apps usage with bipolar disorder state. In
PETRA’14.

[2] Min S Hane Aung, Faisal Alquaddoomi, Cheng-Kang Hsieh, Mashfiqui Rabbi,
Longqi Yang, John P Pollak, Deborah Estrin, and Tanzeem Choudhury. 2016.
Leveraging multi-modal sensing for mobile health: a case review in chronic pain.
IEEE journal of selected topics in signal processing 10, 5 (2016), 962–974.

[3] Jeffrey A Burke, Deborah Estrin, Mark Hansen, Andrew Parker, Nithya Ra-
manathan, Sasank Reddy, and Mani B Srivastava. 2006. Participatory Sensing. In
World Sensor Web Workshop.

[4] Luca Canzian and Mirco Musolesi. 2015. Trajectories of depression: unobtrusive
monitoring of depressive states by means of smartphone mobility traces analysis.
In UbiComp’15.

[5] Tanzeem Choudhury, Gaetano Borriello, Sunny Consolvo, Dirk Haehnel, Beverly
Harrison, Bruce Hemingway, Jeffrey Hightower, Karl Koscher, Anthony LaMarca,
James A Landay, et al. 2008. The Mobile Sensing Platform: An Embedded Activity
Recognition System. IEEE Pervasive Computing 7, 2 (2008), 32–41.

[6] Alex W DaSilva, Jeremy F Huckins, Rui Wang, Weichen Wang, Dylan D Wagner,
and Andrew T Campbell. 2019. Correlates of Stress in the College Environment
Uncovered by the Application of Penalized Generalized Estimating Equations to
Mobile Sensing Data. JMIR mHealth and uHealth 7, 3 (2019), e12084.

[7] Sophia Haim, Rui Wang, Sarah E Lord, Lorie Loeb, Xia Zhou, and Andrew T
Campbell. 2015. The mobile photographic stress meter (MPSM): A new way to
measure stress using images. In Adjunct proceedings of the 2015 ACM international
joint conference on pervasive and ubiquitous computing and proceedings of the 2015
ACM international symposium on wearable computers. ACM, 733–742.

[8] Natasha Jaques, Sara Taylor, Akane Sano, Rosalind Picard, et al. 2017. Predicting
tomorrow’s mood, health, and stress level using personalized multitask learn-
ing and domain adaptation. In IJCAI 2017 Workshop on Artificial Intelligence in
Affective Computing. 17–33.

[9] Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. In ICLR’15.

[10] Nicholas D Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choud-
hury, and Andrew T Campbell. 2010. A survey of mobile phone sensing. IEEE
Communications Magazine 48, 9 (2010).

[11] Huitian Lei, Ambuj Tewari, and Susan Murphy. 2014. An Actor-critic Contextual
Bandit Algorithm for Personalized Interventions using Mobile Devices. In NIPS
2014 Workshop on Personalization: Methods and Applications.

[12] Abhinav Mehrotra, Robert Hendley, and Mirco Musolesi. 2016. Towards multi-
modal anticipatory monitoring of depressive states through the analysis of
human-smartphone. In Adjunct UbiComp’16.

[13] A Mehrotra, S Muller, G Harari, S Gosling, Cecilia Mascolo, M Musolesi, and
Peter Jason Rentfrow. 2017. Understanding the role of places and activities on
mobile phone interaction and usage patterns. IMWUT 1, 3 (2017).

[14] Abhinav Mehrotra and Mirco Musolesi. 2017. Designing effective movement digi-
tal biomarkers for unobtrusive emotional state mobile monitoring . InMobiSys’17
Adjunct.

[15] Abhinav Mehrotra, Veljko Pejovic, and Mirco Musolesi. 2014. SenSocial: A
Middleware for Integrating Online Social Networks and Mobile Sensing Data
Streams. In Middleware’14.

[16] Gatis Mikelsons, Matthew Smith, Abhinav Mehrotra, and Mirco Musolesi. 2017.
Towards Deep Learning Models for Psychological State Prediction using Smart-
phone Data: Challenges and Opportunities. In NIPS Workshop on Machine Learn-
ing for Healthcare 2017. Long Beach, CA, USA.

[17] Geoffrey Miller. 2012. The Smartphone Psychology Manifesto. Perspectives on
Psychological Science 7, 3 (2012), 221–237.

[18] Debbie SMoskowitz and SimonNYoung. 2006. Ecological momentary assessment:
what it is and why it is a method of the future in clinical psychopharmacology.
Journal of Psychiatry and Neuroscience 31, 1 (2006), 13.

Workshop Full Paper MCSS ’19, June 21, 2019, Seoul, Korea

9



[19] John P Pollak, Phil Adams, and Geri Gay. 2011. PAM: a photographic affect
meter for frequent, in situ measurement of affect. In Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 725–734.

[20] Mashfiqui Rabbi, MinHane Aung, and TanzeemChoudhury. 2017. Towards health
recommendation systems: an approach for providing automated personalized
health feedback from mobile data. In Mobile Health. Springer, 519–542.

[21] Kiran K. Rachuri, Mirco Musolesi, Cecilia Mascolo, Jason Rentfrow, Chris Long-
worth, and Andrius Aucinas. 2010. EmotionSense: A mobile phones based adap-
tive platform for experimental social psychology research. In UbiComp’10.

[22] James A Russell. 1980. A circumplex model of affect. Journal of personality and
social psychology 39, 6 (1980), 1161.

[23] Sohrab Saeb, Mi Zhang, Christopher J Karr, StephenM Schueller, Marya E Corden,
Konrad P Kording, and David C Mohr. 2015. Mobile phone sensor correlates of
depressive symptom severity in daily-life behavior: an exploratory study. Journal
of Medical Internet research 17, 7 (2015), e175.

[24] Klaus R Scherer. 2005. What are emotions? And how can they be measured?
Social science information 44, 4 (2005), 695–729.

[25] Yoshihiko Suhara, Yinzhan Xu, and Alex’Sandy’ Pentland. 2017. DeepMood:
Forecasting Depressed Mood Based on Self-Reported Histories via Recurrent
Neural Networks. InWWW’17.

[26] Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari, Stefanie
Tignor, Xia Zhou, Dror Ben-Zeev, and Andrew T Campbell. 2014. StudentLife:
assessing mental health, academic performance and behavioral trends of college
students using smartphones. In UbiComp’14.

CORRELATION MATRICES
The tables below report the pairwise Spearman coefficients of cor-
relation for a selection of features. The feature definitions are given
in the text.

GPS features, N=1947:

f.1 f.2 f.3 f.4 f.5 f.6 f.7

f.2 0.77
f.3 0.58 0.40
f.4 0.14 0.13 0.14
f.5 0.59 0.53 0.31 0.06
f.6 0.44 0.28 0.63 0.15 0.22
f.7 0.32 0.24 0.40 0.28 0.18 0.66
day -0.09 -0.07 -0.14 -0.03 -0.02 -0.10 -0.10

Actionable features, N = 2401:

f.8 f.9 f.10 f.11 f.12 f.13 f.14

f.9 -0.01
f.10 0.01 -0.33
f.11 0.07 -0.06 0.01
f.12 0.03 -0.04 -0.00 0.53
f.13 0.00 -0.03 -0.01 0.09 0.08
f.14 0.00 -0.06 -0.03 0.15 0.09 0.71
day -0.02 0.06 0.01 -0.12 0.01 -0.12 -0.18
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