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Abstract
Graph path search is a classic computer science problem that has been recently
approached with Reinforcement Learning (RL) due to its potential to outperform
prior methods. Existing RL techniques typically assume a global view of the
network, which is not suitable for large-scale, dynamic, and privacy-sensitive
settings. An area of particular interest is search in social networks due to its
numerous applications. Inspired by seminal work in experimental sociology,
which showed that decentralized yet efficient search is possible in social networks,
we frame the problem as a collaborative task between multiple agents equipped
with a limited local view of the network. We propose a multi-agent approach
for graph path search that successfully leverages both homophily and structural
heterogeneity. Our experiments, carried out over synthetic and real-world social
networks, demonstrate that our model significantly outperforms learned and
heuristic baselines. Furthermore, our results show that meaningful embeddings
for graph navigation can be constructed using reward-driven learning.

1 Introduction
Graph path search is a fundamental task in Computer Science, pivotal in various domains such as
knowledge bases [1], robotics [2], and social networks [3]. Given a start node and end node, the
goal is to find a path from a source to a destination in the graph that connects them and optimizes
desiderata such as minimizing path length. We refer to search strategies that achieve this as efficient.
The problem is generally framed from a centralized perspective with a global view of the network,
which is impractical or infeasible for several applications. In peer-to-peer networks [4], where
privacy is a primary concern, a centralized agent poses significant risks [5–7]. Large graphs may also
induce scalability bottlenecks as the storage requirements of a centralized directory strain memory
limitations [8]. Moreover, in dynamic networks, maintaining a consistent global view of the topology
may be impossible [9]. Graph path search is of particular interest in social networks given the inherent
commercial applications and potential for new insights from a social sciences perspective [10, 11].

In this paper, we will study the problem of decentralized path graph search using local information.
We will consider social networks and we will discuss how the proposed method can be directly applied
to any networks for which topological and node attribute information is available. Indeed, prior
experiments in human social networks, such as Stanley Milgram’s renowned “small world" experiment
[12]2 reveals the existence of short paths in social networks that are discoverable solely through local

∗Correspondence to pisacane.alexei@gmail.com.
2Milgram’s experiment investigated the degree of connectedness among people in the United States, leading

to the concept of “six degrees of separation”, the idea that any two people on Earth are connected by a chain
of no more than six acquaintances, which has also entered popular culture [13]. Milgram selected participants
from Nebraska and Kansas. Each participant was given a letter and instructed to send it to a target person,
a stockbroker living in Boston. However, they could only send the letter to someone they knew personally,
characterized by certain (node) attributes who they thought might be closer to the target. Each recipient of the
letter would then forward it to someone they knew personally, continuing this process until the letter reached the
target. On average, it took about six steps for the letters to reach the stockbroker in Boston [14].
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graph topology and high-level node attributes, e.g., characteristics of the individuals, such as their
occupation, their high-school, and so on. Many social networks exhibit two key properties that make
decentralized search with partial information possible and efficient. The first, homophily [15], reflects
the tendency of individuals to connect with others who share similar attributes. The second is the
heterogeneity of local structure in many networks, in which nodes are often organized into highly
connected communities [16], with a smaller number of weak ties [17, 18] or central connectors [19]
bridging these node clusters and acting as shortcuts.

Reinforcement Learning (RL) has recently been employed with a centralized perspective for discover-
ing learned heuristics for graph search [20, 21] and reasoning over paths in knowledge graphs [22, 23],
in a way that complements or outperforms classic algorithms. Motivated by the promise of RL and
the goal to attain decentralized graph path search, in this paper, we propose a multi-agent RL formu-
lation in the Decentralized Partially Observable Markov Decision Process (Dec-POMDP) framework.
Agents have only local visibility of graph topology and neighbor attributes, and cooperate towards
finding paths to the target node. We propose a method for learning in this Dec-POMDP that, in
accordance with the Centralized Training and Decentralized Execution (CTDE) paradigm [24], trains
an actor-critic model with node representations learned by a Graph Attention Network [25] with
shared parameters. These embeddings are computed via a message-passing procedure starting from
the raw node attributes and the graph topology. For this reason we name the resulting method
GARDEN: Graph Attention-guided Routing for DEcentralised Networks. At execution time, the
policy is used in a decentralized fashion by all agents.

We conduct experiments on synthetic and real-world social network graphs with up to 600 nodes to
evaluate our model design. Our findings highlight the superior ability of our method to utilize both
homophily and local connectivity better when compared to learned and handcrafted baseline models.
Moreover, we find that the learned embeddings are meaningful representations for navigation in high-
dimensional feature space. Our results show that the dynamics observed in Milgram’s experiment can
emerge using reward-driven learning. RL is able to construct a latent feature space that effectively
incorporates both node attribute information and network structure for use in graph path search.
Therefore, this work supports the notion that decentralized graph path search can succeed given
appropriate representations, and shows a possible mechanism for how representations similar to those
inherently used by individuals may be constructed.

2 Related Work

2.1 Network Science

Search is a common operation in network applications. Various classic algorithms [26] ensure path
discovery between two nodes under specific conditions. They require maintaining global knowledge
of the graph structure, which, as we have argued, is impractical in certain cases due to considerations
of privacy, scalability, and dynamicity. We therefore focus our attention on graph path search using
only local information.

As previously discussed, our inspiration for studying this problem is Milgram’s “small world"
experiment [12]. The findings, later validated on a larger scale [27], support this hypothesis in social
networks, which are characterized by short mean path lengths. Subsequent research [28] highlighted
the discovery of effective routing strategies, emphasising the concept of homophily [15], which states
that individuals seek connections to others that are similar to themselves.

In addition to homophily, many networks are characterized by a power-law degree distribution [29]
and exhibit heterogeneity in node degree. In such networks, a few “hub" nodes with numerous
connections coexist with many nodes having a relatively small degree. Highly connected nodes
therefore offer potential shortcuts in search trajectories by bridging sparsely connected communities.

For effective search, finding the bridging node between two communities is often required. Relying
solely on homophily or node degree may be ineffective, as the bridging node might lack a large
degree or significant attribute similarity with the target node. In networks with large clusters, an agent
may spend considerable time navigating the current cluster before reaching the desired community.
Identifying weak ties [17] between communities is challenging using only node attributes or degrees;
therefore, an effective search for weak ties requires awareness of candidate nodes’ neighborhoods.
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A useful lens for viewing this problem is through a “hidden metric space" [30] of node features.
Assuming node features are representative of their position within this space, the probability of
edge-sharing increases with decreasing pairwise attribute distance. Empirical evidence supports the
ef�ciency of navigation using this underlying metric. If an approximation to the hidden metric using
only local graph structure is feasible, a decentralized strategy could involve moving toward nodes
minimizing the approximate metric [30, 31].

The approach of Simsek and Jensen[32] is most closely related to ours as it also treats the problem
of search by leveraging both homophily and the node degree disparity. The algorithm uses an
estimate of the statistical relationship between the attribute similarity and connection probability
whose computation requires knowledge of the attributes of all the nodes in the network. In contrast,
our method does not require the availability of this global information.

2.2 Reinforcement Learning for Graph Routing and Search

Reinforcement Learning methods have been applied for a variety of graph optimization problems in
recent years as a mechanism for discovering, by trial-and-error, algorithms that can outperform classic
heuristics and metaheuristics [33]. Their appeal stems from the �exibility of the RL framework to
address a wide variety of problems, requiring merely that they can be formulated as MDPs. The most
relevant works in this area treat routing and search problems over graphs.

Early work on RL for routing demonstrated the potential of the MDP formalism [34–36], but suffered
from the main pitfall of tabular RL methods: poor scalability. Interest has been reignited recently
by several works that employ function approximation for scaling to larger problems. In this line of
work, Valadarsky et al.[37] considered learning routing policies on a dataset of historical traces of
pairwise demands and applying them in new traf�c conditions. The MDP is framed as learning a set
of edge weights from which the routing strategy is determined. Hope and Yoneki[38] expanded on
this work by introducing a Graph Neural Network (GNN) [39] technique for function approximation,
showing its advantages over using simple feedforward neural networks. More recent work by Almasan
et al.[40] leveraged a GNN representation trained using a policy gradient algorithm. They frame
actions as the choice of a middle-point for a �ow given start and target nodes, with previous action
choices becoming part of the state. Other recent works on RL for routing considered optimizing a
weighted combination of delay and throughput [41] and deciding how to re-route the most important
�ows (i.e., those with the most traf�c) given an initial routing scheme [42].

Another important line of work studies how to perform search on graphs. In contrast to routing,
for search tasks there is no notion of a link load associated with traversing a particular node or
edge in the graph. A notable contribution in this direction is work by Pándy et al.[21], where RL
agents are tasked with learning a heuristic function for augmentation of A* search. Patankar et al.
[43] considered the task of validating the way in which humans perform graph navigation, adopting
two theories relating topological graph properties to minimizing gaps in knowledge or compressing
existing knowledge. Their DQN-based agent parameterized by a GNN was validated successfully
using human graph navigation trajectories.

The problem ofknowledge graph completionmay also be viewed as graph traversal in instances with
heterogeneous edge types [44] and with a target node that is not speci�ed a priori. Das et al.[22]
proposed an MDP formulation of this task, in which an agent chooses the next relationship to traverse
given the current node. A proportion of the true relationships in the knowledge graph is masked and
used to provide the reward signal for training the agent via REINFORCE. The M-Walk method [23]
builds further in this direction by leveraging the determinism of the transition dynamics. Therefore,
training with trajectories from a Monte Carlo Tree Search (MCTS) policy [45] can overcome the
reward sparsity associated with the random exploration of model-free methods. Zhang et al.[46]
proposed a hierarchical method that features a high-level agent for choosing a cluster in which the
target may be located, and a lower-level agent that navigates within the cluster.

Lastly, we note that, while the works reviewed in this section share features of our MDP and model
design, none are directly applicable to the problem formulation. Chie�y, we consider a decentralized
graph path search scenario in which each agent has only partial visibility of the network.
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3 Methods

In this section, we �rst introduce our decentralized mathematical formulation of the graph search
problem. Next, we describe the proposed multi-agent reinforcement learning algorithm, which
leverages learnable graph embeddings.

3.1 MDP Formulation

We frame the search problem as a Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) [47] taking place over an attributed, undirected, and unweighted graph structure
G = ( V; E) with n nodes andm edges. An agent is placed on each nodeui 2 V in the graph, while
the edgesE indicate direct bidirectional communication links between agents. An attribute vector
xu i 2 Rd is associated with each agent. The aim is to �nd a path starting from an initial nodeusrc to
a designated target nodeutgt by passing a single globalmessage.

States.The global stateSt at timet is a tuplehS(1)
t ; S(2)

t ; : : : ; S(n )
t i composed of the statesS( i )

t =
(M ( i )

t ; utgt) of the individual agents. Here,M ( i )
t is an indicator variable that denotes the presence or

absence of themessageat a given nodeui at timet. While specifying the target nodeutgt is required
for MDP stationarity, its identity is not provided to the agent in the observation.

Actions. The joint action spaceA = � i A ( i ) is the product of the agent-wise action spaces. At each
timestept of an MDP episode, a nodeui receives themessagem 2 Rd specifying the attributes
xu tgt of the target node (but not its identity). It chooses as its actionA ( i )

t one of its neighbors,
denotedN (ui ), to pass the message on to. We denote this action of nodeui passing the message
to nodeuj by au i ! u j . All other agents take a no-op action at this step, which has no effect. Hence,

A ( i )
t = f au i ! u j juj 2 N (ui )g if M ( i )

t = 1 , andf no-opg otherwise.

Observations. The environment emits a global observationOt = hO(1)
t ; O(2)

t ; : : : ; O(n )
t i at each

time stept, from which each nodeui only observes its own componentO( i )
t . In accordance with our

motivations, we provide agents with only local observations of the graph topology. Concretely, we
equip each agentui with observations of 1-hop ego subgraphsGu j centered on its neighboring nodes,
including visibility of pairwise edges between 1-hop neighbors. The observation will also contain
information on the target node: if the agent possesses the message, it symmetrically can observe an ego
graph centered onutgt. Formally, the observationO( i )

t is de�ned as(m; f Gu j juj 2 N (ui ); Gu tgtg) if

M ( i )
t = 1 , andf Gu j juj 2 N (ui )g otherwise. The ego graphGu j = ( Vu j ; Eu j ) is de�ned such that

Vu j = N (uj ) [ f uj g andEu j = f (uk ; ul ) 2 E juk 2 Vu j ^ ul 2 Vu j g.

Transitions. The message moves deterministically to the selected node, updating the indicatorM ( i )
t +1

accordingly. Concretely,M ( i )
t +1 = 1 if M ( j )

t = 1 ^ A ( j )
t = au j ! u i , and0 otherwise.

Rewards. The episode ends when the message reaches the target node, yielding a collective reward
of +1 for the agents and terminating the episode. Formally,R(k )

t +1 = 1 8k if 9i : M ( i )
t = 1 ^ A ( i )

t =
au i ! u tgt, and0 otherwise. To prevent agents from entering action cycles, we introduce a truncation
criterion: the episode can also end afterTmax interaction steps with the environment.

3.2 Learning Architecture

In our design, we employ the common multi-agent Reinforcement Learning paradigm of Centralized
Training with Decentralized Execution (CTDE) [48]. We consider a fully collaborative setting in
which the agents are all rewarded if messages are successfully delivered to the target node. The
collaborative objective is formulated such that each agent selecting the optimal next action results in
an optimal trajectory through the graph. Therefore, the optimal trajectory can be constructed in a
decentralized manner.

As it is common in the CTDE paradigm, we utilize parameter-sharing across agent networks. In the
training scheme, a centralized agent receives localized observations from individual agents at each
step, and is tasked with selecting optimal actions in the search path. The optimal decision is �rst
learnt, and then replicated and distributed to individual nodes at execution time.
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At each training step, a central agent is given incomplete observations and receives sparse and
delayed rewards from the environment. Given these speci�cations, we propose the use of a variant of
the Advantage Actor-Critic (A2C) algorithm [49] to promote adequate exploration with acceptable
sample ef�ciency. The A2C value network is also learned in a centralized fashion to guide the training
of the policy network. Learning a stochastic policy (rather than a deterministic one) is important
for the problem under consideration given that a short path to the target may not be available via
a particular neighbor despite a high level of attribute similarity. Lastly, we incorporate entropy
regularization to ensure the policy maintains a high degree of randomness while still aiming to
maximize the expected discounted return.

The goal is to learn, for each agent, a policy� u i that maps observations to actions. We formulate the
choice of neighbor to which the message should be transmitted based on values output by an MLP-
parameterized policy networkf � 1

� . The policy network is applied for each neighboruj 2 N (ui ) of
the nodeui that is currently in possession of the message at timet, and the SoftMax function is used
to derive a probability distribution. Concretely, for nodeui in posession of the messagem, the policy
is de�ned as:

� u i (au i ! u j jO( i ) ) =
exp(f � 1

� ([xu j jj xu tgt]))P
u k 2N (u i ) exp(f � 1

� ([xu k jj xu tgt]))
; (1)

where[�jj� ] denotes concatenation. Similarly, to estimate the value function, we pass the current node
ui and the target nodeutgt attributes through an MLP-parameterized value networkf � 2

v :

v(O( i ) ) = f � 2
v ([xu i jj xu tgt]); (2)

Whereui is the node in possession of the messagem at timet. It is interesting to note that the
node features that are used as input to the policy and value networks will impact the effectiveness
of the learned policies. The simplest choice is to use the raw node featuresxu i , and we denote
the resulting algorithm asMLPA2C. We also consider the simplest extension to this model that
minimally incorporates local graph topology by augmenting node attributes with node degrees, i.e.,
xWD

u i
= [ xu i jjdeg(ui )]. We refer to this as MLPA2CWD.

3.3 GARDEN

Recall the “hidden metric" hypothesis discussed in Section 2.1, which posits that a viable policy can
be motivated by moving through the graph to reduce node distance, provided a good approximation
of the underlying metric is obtained. Instead of prescribing that the raw node attributes should be
used to approximate this metric, we propose that relevant node features, which capture the potentially
complex interplay between attributes and topologies,can be learned. To do so, we suggest replacing
raw node attributes with learned embeddingsxGAT

u i
obtained from a Graph Attention Network (GAT)

[25], denotedf � 3
rep . These embeddings are computed via a message-passing procedure starting from

the raw node attributes and the graph topology.

The method, which we refer to as Graph Attention-guided Routing for Decentralized Networks
(GARDEN), is shown using pseudocode in Algorithm 1. The full set of model parameters� =
f � i g3

i =1 is trained implicitly as we take gradient descent steps over the combined episodic loss
P

t L ( � )
t + L (v)

t . The node embeddings are recalculated at the start of each episode. The notation
[[�]] denotes the partial stopping of gradients, andH (p) denotes the entropy of a discrete distribution,
given by

P
i pi log(pi ).

4 Experimental Setup

4.1 Datasets

Real-world Graphs. To assess the performance of decentralized graph strategies on real-world data,
we consider several ego graphs from the Facebook social network [50] present in the SNAP [51]
repository. These graphs depict individuals and their Facebook friendships. Each node is equipped
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Algorithm 1 Graph Attention-guided Routing for DEcentralized Networks (GARDEN).

1: Input: Policy Networkf � 1
� , Value Networkf � 2

v , Graph Representation Networkf � 3
rep , Ego

Graphsf Gu ju 2 Vg, entropy regularization coef�cient� , discount factor .
2: Output: Learned policy, value and representation networksf � 1

� ; f � 2
v ; f � 3

rep .
3: Randomly initialize model parameters� = f � i g3

i =1 .
4: for i = 1 to Nepisodesdo
5: Initialize episode bufferB
6: Sample starting nodeu, target nodeutgt
7: for w 2 V do
8: ComputexGAT

w usingf � 3
rep

9: end for
10: m = xGAT

u tgt

11: t = 0
12: while u 6= utgt andt < T max do
13: Sample actionau! u 0 � � u (� jm)
14: Move message to nodeu0, observe rewardr
15: Store transition(u; u0; r ) in B
16: u  u0

17: t = t + 1
18: end while
19: Initialize episode lossL = 0
20: for (u; u0; r ) in B do
21: Â = r + [[ f � 2

v ([xGAT
u 0 jjm ])]] � f � 2

v ([xGAT
u jjm ])

22: L ( � ) = � Â log f � 1
� ([xGAT

u 0 jjm ]) � �H (� (ujm))
23: L (v) = Â2

24: L = L + L ( � ) + L (v)

25: end for
26: Take gradient descent step on L w.r.t.�
27: end for

with binary, anonymized attributes collected through surveys. Due to computational budget con-
straints, we select the largest connected components of 5 graphs such that they have between 100 and
600 nodes. High-level descriptive statistics for these graphs are presented in Table 4 in the Appendix.

Synthetic Graphs.We additionally consider synthetically generated graphs that are both attributed
and display homophily. This allows for the creation of a diverse range of graphs with varying degrees
of sparsity, enabling evaluations under different synthetic conditions. We follow the generative
graph construction procedure proposed by Kaiser and Hilgetag[52], which samples node attributes
uniformly from a unit box[0; 1]d and creates edges stochastically according to the rulep((u; u0) 2
E) = max(1 ; �e � � kx u � x u 0k2 ), where� and� are scaling coef�cients.

4.2 Baselines

The learned baselines we use are the MLPA2C and MLPA2CWD techniques as introduced in
Section 3.2. Furthermore, we consider a suite of heuristic baselines that utilize homophily and graph
structure for graph path search. The simplest baseline,GreedyWalker, selects the next node greedily
based on the smallest Euclidean attribute distance:� (u) = argminu 02N (u) kxu 0 � xu tgtk2:

Given that deterministic policies may result in action loops, we generalize this to a stochas-
tic agent (DistanceWalker) that acts via a SoftMax policy over attribute distances with a tuned
temperature parameter:� ( � ) (u0ju) = exp( �k x u 0� x u k2 =� )P

u 002N ( u ) exp( �k x u 00� x u k2 =� ) : Similarly, we consider the

stochasticConnectionWalkeragent, which uses a SoftMax policy over node degree:� ( � ) (u0ju) =
exp(deg(u 0)=� )P

u 002N ( u ) exp(deg(u 00)=� ) : Lastly, theRandomWalkerbaseline selects uniformly at random between

nodes from the current neighbourhood:� (u0ju) = 1
deg(u) :
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The stochastic agents use a temperature parameter� to control greediness. To perform a fair
comparison with our learned models, we individually tune the temperature for the DistanceWalker
and ConnectionWalker models using a validation set for each graph.

4.3 Model Evaluation & Selection

For evaluating models, we consider the following metrics:

1. Mean Oracle Ratio�Roracle: the ratio between episode length and the shortest path length averaged
over all source-destination pairs;

2. Truncation RateRtrunc: % of episodes exceeding the truncation lengthTmax;

3. Win RateRwin: % of episodes where a given agent obtains the relative shortest path length, with
ties broken randomly.

To mitigate potential memorization of routes during training, especially when nodes are uniquely
identi�able based on attributes, we partition the node setV into three disjoint groups:V train, V val,
andV test at ratios of80%=10%=10%. The source nodeusrc is sampled uniformly at random from
V, while the target nodeutgt depends on whether training, validation, or testing is performed. This
ensures that the agent cannot memorize the path to a target node since, by construction, it is not
encountered during training. We always sample a “fresh” source-target pair during training, while for
validation and evaluation the source-target pairs are serialized and stored (such that the performance
evaluated over them is consistent). The Mean Oracle Ratio�Roracle is used as the primary metric for
model validation and evaluation.

4.4 Sensitivity Analysis of Graph Density Parameter

Given a constant graph size, reduced graph density diminishes available paths to a target [53]. This
intensi�es exploration challenges and heightens the risk of truncated episodes, yielding sparser
reward signals in training. Motivated by this rationale, we assess GARDEN across a set of
generated graphs with diverse sparsity levels. We randomly generate10 graph topologies for
� 2 f 0:01; 0:05; 0:1; 0:2; 0:3; 0:4; 0:5; 0:75; 1:0g with number of nodesn = 200 and� = 30. We
train GARDEN separately for each value of� and gauge its performance against the baselines.

4.5 Ablation of Node Representation

We assess our GNN-based model against alternative designs through an ablation study on synthetic
graphs. Using �ve random seeds and �xed graph parameters (n = 200, � = 30, � = 5 ), we conduct
experiments on our three model designs: the MLPA2C model using only the raw node attributesx, the
MLPA2C variant incorporating both node attributes and degreesxWD, and the proposed GNN-based
GARDEN method, which employs learned graph embeddingsxGAT.

5 Experimental Results

5.1 Facebook Graphs

As shown in Table 1, we �nd that GARDEN signi�cantly outperforms baselines across all the
real-world datasets and metrics we have tested on. Given the variety of attribute dimensions and
densities, as displayed in Table 4 in the Appendix, we may argue that in graphs with high amounts of
latent structure, our model is robust to these factors.

In Figure 3 in the Appendix, we visualize the value function learned by GARDEN on these social
network ego graphs. This highlights that the values obtained by GARDEN serve as a reliable proxy
for graph distance, assigning highest values to nodes in the target's cluster or clusters with strong
connectivity to the target's community. Furthermore, it demonstrates the interpretability of the
proposed technique for graph path search.

In Table 5 in the Appendix, we also include a runtime analysis to quantify the scalability of the
proposed method. These results show that GARDEN maintains sub-millisecond per-action inference
times even with CPU-only execution as the graph size increases, thanks to its decentralized nature. We
therefore expect the method to maintain fast inference times even in substantially larger topologies.

7
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Table 1: Metrics obtained by the methods on the 5 social network ego graphs. GARDEN consistently
yields the best performance, followed by the DistanceWalker method.

Metric GreedyWalker DistanceWalker ConnectionWalker RandomWalker GARDEN (Ours)
�Roracle(#) 27.17 ± 1.09 15.98 ± 0.79 33.39 ± 1.15 33.17 ± 1.16 10.95 ± 0.76

31.78 ± 1.22 13.01 ± 0.90 34.62 ± 1.17 34.27 ± 1.18 9.89 ± 0.78
27.35 ± 1.19 9.99 ± 0.78 38.84 ± 1.42 38.88 ± 1.43 8.74 ± 0.76
25.69 ± 0.88 14.33 ± 0.65 28.25 ± 1.00 28.01 ± 1.01 12.08 ± 0.71
28.29 ± 0.66 22.71 ± 0.70 28.11 ± 0.69 28.22 ± 0.67 16.97 ± 0.74

Rtrunc(#) 79.00 39.70 76.90 76.70 14.90
78.00 19.50 68.50 64.10 12.60
70.00 13.90 69.80 67.20 13.50
88.00 44.00 81.50 79.40 40.10
96.00 72.70 89.50 90.00 48.20

Rwin(" ) 7.90 26.20 2.70 2.50 60.70
10.90 29.90 4.30 3.90 51.00
11.90 33.80 1.50 2.00 50.80
6.10 32.10 5.30 8.20 48.30
2.20 24.90 7.60 10.50 54.80

5.2 Sensitivity Analysis of Graph Density and Temperature Parameters

Figure 1: Mean Oracle Ratio obtained by the stochastic
baselines on the validation dataset as a function of the tem-
perature� for varying values of� .

In Figure 1, we show the validation
performance as a function of the Soft-
Max temperature� of the stochas-
tic DistanceWalker and Connection-
Walker baselines. For both methods,
a middle-ground temperature value
yields shorter path lengths. Further-
more, performance is more sensitive
to � for the DistanceWalker method.

The sensitivity analysis for the syn-
thetic graph density parameter� is
shown in Figure 2. GARDEN consis-
tently matches or surpasses baseline
performance for all� values for both
Mean Oracle Ratio and Win Rate met-
rics. However, DistanceWalker outperforms our model for higher� in Truncation Rate. In this
setting, DistanceWalker bene�ts from knowledge of the “true” node attributes determining link
generation and high� values leading to most connections being realized. This is in contrast with the
gap on real-world datasets, for which this metric is not available: indeed, GARDEN may be seen as
recovering an underlying “hidden metric”.

5.3 Ablation of Node Representation

Table 2: Ablation results obtained by pair-
ing different node representations with the
proposed problem formulation and Reinforce-
ment Learning algorithm.

Agent �Roracle(#) Rtrunc(#) Rwin(" )

GARDEN 1.95±0.09 1.68 34.44
MLPA2CWD 2.23±0.13 2.94 30.78
MLPA2C 2.31±0.12 4.32 34.78

As shown in Table 2, GARDEN signi�cantly outper-
forms the MLPA2C and MLPA2CWD designs that
only use raw node attributes and MLP-parameterized
policies in bothRtrunc and �Roracle. The standard MLP-
parameterized model achieves the best Win Rate
Rwin, and the differences with respect to this met-
ric are less conclusive. This can be explained by the
arbitrary tie-breaking performed when path lengths
match for all methods, coupled with the high density
parameter� = 5 leading to shorter path lengths.

6 Conclusions and Future Work

In this paper, we have considered the problem of decentralized search in graphs, which is motivated
by privacy, scalability, and dynamicity requirements of many network modeling scenarios. Despite
the lack of a central view of the network, the homophily and community structure observed in
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Figure 2: Metric values obtained by the methods as a function of the synthetic graph density
parameter� . GARDEN generally performs best, but it is notably surpassed by DistanceWalker in the
truncation rate for high values of� .

many networks can allow for decentralized agents to �nd short paths to a given target, as famously
demonstrated by the Milgram experiment [12].

We have proposed the GARDEN method to address this problem, which trains agents in a centralized
fashion and allows for decentralized policy execution. Our approach is based on message routing
policies that are learned using Reinforcement Learning, paired with node features learned by a Graph
Neural Network speci�cally for the task. Our results show that our method can outperform stochastic
routing policies based on attribute or structural information alone. It is possible to observe signi�cant
improvements when searching on real-world social network graphs with non-trivial latent structures
and high-dimensional node attributes.

For simplicity, we have considered amemory-lesssearch procedure that is akin to a biased random
walk. This means that the agents cannot react to the unsuccessful exploration of a given region of the
graph before arriving at a previously visited node, and the same distribution over actions will apply
independently of the historical trajectory. The problem formulation can be extended by including
the history of visited nodes in the messagem and forbidding using already-visited nodes as actions.
RNNs may be used to encode the history as input to the learned models, as performed in other
learning-based graph search works [21, 23].

We believe that our results provide evidence for a sort of “hidden metric” hypothesis, showing how a
latent feature space amenable for graph navigation can be recovered by reward-driven learning. An
interesting aspect that can be considered by future work is to compare these emergent representations
with the means in which individuals take decisions for routing messages in experiments conducted
over real social networks.
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A Appendix
A.1 Implementation Details

Our implementation is publicly available at https://github.com/flxclxc/rl-graph-search.
Please see the README.md file for instructions on how to set up the dependencies, download the
publicly available data, and run the code.

We train our models using the Adam optimizer [54] for 200; 000 episodes, evaluating performance
every 100 episodes on the serialized validation set. Early stopping is applied based on the validation
loss �Roracle. Unless otherwise stated, we train and evaluate models over 10 random seeds, reporting
confidence intervals where appropriate. Table 3 presents the hyperparameter configuration shared
across the three model designs. We fix  = 0:99 and the maximum episode length Tmax = 100. Lastly,
when providing node input features to the GAT, we append a binary indicator variable that signals
that a particular node u is the center of the ego graph to the raw attributes defined as [xwjjI[w = u]].
This is used to distinguish the node from which the message must be sent.

We note that, while the GAT-based model contains 3 layers, we only use the ego graphs centered
around the nodes to compute the embeddings, hence ensuring that only 1-hop visibility is provided.
The first layer is fed the raw node attributes, while the second and third layers use the “latent”
embeddings constructed by the previous layer. The message-passing therefore occurs over the same
1-hop subgraph in all the layers.

A.2 Additional Tables and Figures

Summary statistics. Statistics about the considered real-world graphs are shown in Table 4.

Runtime analysis. We carry out a runtime analysis to examine the scalability and computational
cost of GARDEN. In terms of methodology, we calculate the mean action time, i.e., the elapsed wall
clock time measured in milliseconds from the arrival of a message at a node until an action is chosen.
The measurements are averaged over 100 target nodes and are carried out using an Intel i7-11800H
CPU. We note that the execution of GARDEN also involves a time overhead for creating the local
ego graph embeddings from f�3

rep , which is reported separately.

The results are shown in Table 5. They demonstrate that both the embedding overhead time and
action time increase slightly as the number of neighbors grows, but stays reasonably bounded. As
it is expected, a clear hierarchy is present in which the neural network-based models require more
inference time, followed by the heuristic attribute-based baselines, and finally the simple random
walk baseline. This analysis highlights the fact that GARDEN maintains sub-millisecond inference
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Parameter Value

Actor Network Hidden Dimensions 64
Actor Network Layers 3
Critic Network Hidden Dimensions 64
Critic Network Layers 3
Graph Attention Network Hidden Dimensions 64
Graph Attention Network Heads 1
Graph Attention Network Layers 3
Entropy Regularization Coefficient � 1� 10−3

Table 3: Hyperparameter configuration used for all the learning-based models.

Graph n lG � d

1 148 2.69 0.16 105
2 168 2.43 0.12 63
3 224 2.52 0.13 161
4 324 3.75 0.05 224
5 532 3.45 0.03 262

Table 4: Number of nodes n, average shortest path length lG, edge density � and attribute dimension
d for each real-world ego graph.

Graph 1 2 3 4 5

Number of Nodes 148 168 224 324 532
Avg # Neighbors 22.86 19.71 28.5 15.52 18.09
Overhead Time GARDEN (ms) 0.3024 0.2349 0.5024 0.2214 0.2143
Action Time: GARDEN (ms) 0.1592 0.1715 0.1800 0.1602 0.1656
Action Time: MLPA2CWD (ms) 0.1446 0.1548 0.1686 0.1532 0.1520
Action Time: MLPA2C (ms) 0.1499 0.1487 0.1518 0.1464 0.1469
Action Time: GreedyWalker (ms) 0.0259 0.0256 0.0323 0.0281 0.0305
Action Time: DistanceWalker (ms) 0.0657 0.0697 0.0735 0.0674 0.0685
Action Time: ConnectionWalker (ms) 0.0453 0.0522 0.0562 0.0456 0.0517
Action Time: RandomWalker (ms) 0.0006 0.0006 0.0007 0.0006 0.0006

Table 5: Runtime analysis comparing average time for calculating actions across all models, including
overhead computation time of local graph embeddings for GARDEN.

times even with CPU-only execution as the graph size increases, thanks to its decentralized nature.
Notably, the total inference time is lower on the largest 532-node graph compared to the smallest
148-node graph, owing to differences in density. We therefore expect the method to maintain fast
inference times even in substantially larger topologies.

Interpretability of the learned value function. In Figure 3, we plot GARDEN’s learned value
function f�2

v across the social network ego graphs. Brighter colors indicate a higher estimated value
function relative to the target node, which is indicated with a black arrow and chosen randomly
from the respective test sets. For comparison, we also plot the implicit preferability score �kxu �
xutgtk2=� generated by the best-performing baseline, DistanceWalker, for the same source-target
pairs. DistanceWalker struggles with Euclidean pairwise attribute distance due to high dimensionality
and sparsity of node attributes. Conversely, values obtained by GARDEN serve as a reliable proxy
for graph distance, assigning highest values to nodes in the target’s cluster or clusters with strong
connectivity to the target’s community.
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