
Control-Tutored Reinforcement Learning: Towards the Integration of
Data-Driven and Model-Based Control

Francesco DeLellis FRANCESCO.DELELLIS@UNINA.IT
University of Naples Federico II, Italy

Marco Coraggio MARCO.CORAGGIO@UNINA.IT
Scuola Superiore Meridionale, Italy

Giovanni Russo∗ GIOVARUSSO@UNISA.IT
University of Salerno, Italy

Mirco Musolesi∗ M.MUSOLESI@UCL.AC.UK
University College London, UK, and University of Bologna, Italy

Mario di Bernardo∗ MARIO.DIBERNARDO@UNINA.IT

University of Naples Federico II, Italy, and Scuola Superiore Meridionale, Italy

Abstract
We present an architecture where a feedback controller derived on an approximate model of the
environment assists the learning process to enhance its data efficiency. This architecture, which we
term as Control-Tutored Q-Learning (CTQL), is presented in two alternative flavours. The former
is based on defining the reward function so that a Boolean condition can be used to determine
when the control tutor policy is adopted, while the latter, termed as probabilistic CTQL (pCTQL),
is instead based on executing calls to the tutor with a certain probability during learning. Both
approaches are validated, and thoroughly benchmarked against Q-Learning, by considering the
stabilization of an inverted pendulum as defined in OpenAI Gym as a representative problem.
Keywords: Reinforcement learning based control, data-driven control, feedback control.

1. Introduction

Reinforcement learning (RL) is a popular framework used to control systems and devices in a wide
range of applications because of its ability to autonomously find control policies to achieve a desired
goal without assuming that the dynamics of the environment are known (Sutton and Barto, 2018;
Bertsekas and Tsitsiklis, 1996). Despite the many remarkable successes of this type of approaches
(Nian et al., 2020), two key problems for RL algorithms remain to be solved: (i) potentially long
learning times and (ii) the lack of convergence or performance guarantees (important for example
in safety-critical applications) during learning (Berkenkamp et al., 2017; Pfeiffer et al., 2018).

To overcome these problems, a possible solution, particularly for control applications of RL, is
to adopt model-based solutions where the learning agent derives and refines a data-driven model
of the environment during the learning process. Examples in the literature include (Deisenroth and
Rasmussen, 2011; Kurutach et al., 2018) among many others. However, in many control applica-
tions, some equation-based models of the environment are often available, even though they might
not be accurate enough to allow for an entirely model-based solution of the control problem. When

© F. DeLellis, M. Coraggio, G. Russo∗, M. Musolesi∗ & M.d. Bernardo∗.



classical RL is used, such approximate or partial models of the environment are often discarded in
favour of a completely model-free approach.

In this paper, we investigate the possibility of embedding a feedback control law synthesized by
using a partial or uncertain model of the environment to assist the learning process. In the same spirit
of human-assisted learning strategies, where data collected from humans in the loop are exploited
to enhance the learning process (Lien and Pratt, 2009; Suppakun and Maneewarn, 2020; Zhan et al.,
2021; Nguyen et al., 2019), here we propose the use of a feedback controller in the loop with the
aim of steering the learning process, reducing the amount of data samples required and improving
the ability of learnt policies to achieve the required stability, robustness and performance. The
contributions of this paper can be summarized as follows: (1) we propose a novel algorithm that
leverages the use of a feedback controller in the loop to make the RL process more data efficient;
(2) we present both a deterministic and a probabilistic approach to implement the strategy above and
decide when assistance from the control tutor (the feedback controller in the loop) is invoked during
the learning; (3) by using a set of aptly defined metrics, we compare the performance of the novel
approaches with those of a classical RL algorithm both from a learning and a control perspective
by using the inverted pendulum benchmark implementation from OpenAI Gym (Brockman et al.,
2016).

Our results convincingly show that the proposed “control-tutored” learning approaches require
fewer data samples and/or obtain higher rewards, while achieving smaller errors in control regula-
tion tasks.

2. Related Work

Several solutions in the existing literature aim at combining control theoretic strategies with rein-
forcement learning to solve control problems. In particular, various approaches combine RL with
model predictive control (MPC). For instance, in (Rathi et al., 2020), a MPC is used to decide the
action when the state of the system to control is in a certain region, while the action taken from a
Q-table is used otherwise; the table being updated after every action. The use of a (linear) MPC
strategy is again suggested in (Zanon and Gros, 2021), where a reinforcement learning module can
vary the parameters of the cost function and refine the available model of the system to control.

Other solutions combining control strategies with RL include those in (Abbeel et al., 2006),
where a policy gradient algorithm is adopted which uses preexisting knowledge of the system dy-
namics in the form of an approximate Markov decision process; or that presented in (Li et al., 2021),
where a reference action governor is used to enforce safety constraints (in the sense of restricting
the state space to admissible regions). In so doing, the action is decided via an optimization prob-
lem that penalizes deviations from the action suggested by a RL strategy, making these approaches
a valuable solution to achieve safe RL.

A strategy similar in spirit to the control-tutored reinforcement learning (CTRL) we propose
here is reported in (Argerich et al., 2020). Therein, to improve data efficiency, a Deep Q-Network is
extended with a policy that, with some probability, can take an action dictated by an “expert”, which
can solve the control problem. However, differently from (Argerich et al., 2020), in our CTRL
approach, we consider the “expert” to be a feedback control law, that if deployed on its own would
be in general unable to achieve the control goal. Also, note that contrary to previous approaches,
e.g. (Deisenroth and Rasmussen, 2011), where an approximation for the system dynamics is learnt
during the control steps, here we assume to possess and exploit some prior information on the

2



environment before simulations so as to derive some feedback control law to be used to assist the
learning agent. An earlier preliminary version of CTRL was recently presented in (De Lellis et al.,
2021).

3. Mathematical Preliminaries

Notation. Sets are denoted by calligraphic capital characters and random variables are denoted
via capital letters. For example, X is a random variable and we denote its realization by x. The
probability density (mass) function of the continuous (discrete) random variable X is denoted by
p(x) and we use the notation x ∼ p(x) to denote the sampling of a random variable from its
probability function. For both continuous and discrete random variables, we always consider the
situation where the support of p(x) is compact; rand(A) denotes the uniform distribution over the
set A. The expectation of a function, say h(·), of X is defined as Ep[h(X)] :=

∫
h(X)p(x)dx,

when this is continuous; if X is discrete, we have Ep[h(X)] :=
∑

h(x)p(x). In both cases, the
integral/sum is taken on the support of p(x), and we might omit p in Ep when there is no ambiguity.
We denote by ∥·∥ the Euclidean norm.

Problem set-up. We consider a discrete time dynamical system affected by noise, of the form

Xk+1 = fk(Xk, Uk,Wk), x0 = x̃0, (1)

where k ∈ N≥0 is discrete time, Xk ∈ X is the state of the system at time k, with X being the state
space, x̃0 ∈ X is the initial condition, Uk ∈ U is the control input (or action) and U is the set of
feasible inputs. Also, Wk is a random variable representing noise and fk : X ×U ×W → X is the
system’s dynamics.

Following e.g. (Matni et al., 2019; Recht, 2019), given this set-up, we consider the problem of
learning a plan of actions π1, . . . , πN−1 to solve the following finite-horizon optimization problem:

max
π1,...,πN−1

E[J π̄], (2a)

s.t. Xk+1 = fk(Xk, Uk,Wk), k ∈ {1, . . . , N − 1}, (2b)

Uk = πk(Xk), k ∈ {0, . . . , N − 1}, (2c)

x0 given, (2d)

where the time horizon is between 0 and N . In (2) the cost is set as the expectation of the objective
function

J π̄ = rN (XN ) +
N∑
k=1

rk(Xk, Xk−1, Uk−1), (3)

with rk : X × X × U → R and rN : X → R being the rewards received, at each k, by the agent.
In what follows, whenever we assume a function or quantity is stationary, we drop the subscript k
in the notation.

We observe that in many RL scenarios, even if the system dynamics f1, . . . , fN−1 are not per-
fectly known, some partial knowledge about the plant (from e.g. first-principles) might be available.
We propose that this limited information can be exploited to design a feedback control law (or con-
trol tutor) that can be used to assist and drive the learning process towards the solution of a control

3



System

RL policy

Control tutor

uk

ζ

xk

πc

πrl

Switching condition

CTRL

Figure 1: Schematic of the Control-Tutored Reinforcement Learning (CTRL) framework.

problem of interest, reducing the learning times and improving the control performance. In par-
ticular, the control tutor can be invoked under certain circumstances during the learning stage to
suggest actions that the agent can take as an alternative to those computed using a more traditional
approach, e.g. obtained by using a tabular learning strategy.

4. Control Tutored Reinforcement Learning

We start by assuming that we have an estimate of f , say f̂ : X × U → X , so that the dynamics of
system (1) is rewritten as f(x, u, w) = f̂(x, u) + δ(x, u, w), ∀x ∈ X ,∀u ∈ U ,∀w ∈ W , where
δ : X × U × W → X describes the effect of unknown terms in the dynamics and/or of noise
on the system’s dynamics. We term the policy based on the use ofx a control law synthesized by
considering only f̂ as the control tutor policy, and denote it by πc : X → U .

The architecture of the Control Tutored Reinforcement Learning (CTRL) strategy (De Lellis
et al., 2021) is schematically shown in Figure 1. The figure highlights the presence of a switching
condition ζ that orchestrates, at each k, the use of either a policy coming from a RL algorithm or
the tutor policy. The result is the following switching policy used for learning:

π(x) =

{
πrl(x), if ζ is true,

πc(x), otherwise,
(4)

where ζ is a Boolean function (that might depend on time, previous states, etc.) and πrl is the policy
of a RL algorithm.

For concreteness, we now provide a simple expression for the control tutor policy πc. First, let
Ū ⊇ U (Ū might be a continuous set whose discretization yields U); then, from f̂ we can design a
feedback control strategy v : X → Ū . At this point, from v, letting ϵc ∈ (0, 1), and ∀x ∈ X , we
take the control tutor policy in (4) as

πc(x) =

{
argmin

u∈U
∥v(x)− u∥ , with probability 1− ϵc,

u ∼ rand(U), with probability ϵc,
(5)

4



On the other hand, for the reinforcement learning policy πrl in (4), we adopt an ϵ-greedy Q-Learning
solution, i.e.,

πrl(xk) =

argmax
u∈U

Qk(xk, u), with probability 1− ϵrl,

u ∼ rand(U), with probability ϵrl,
(6)

where ϵrl ∈ (0, 1) and Qk : X × U → R is the well-known state-action value function (Sutton and
Barto, 2018; Bertsekas and Tsitsiklis, 1996) at time k.

At time k, once an action is selected from either πrl or πc, the corresponding reward is obtained
and used to update the Q-table according to the law

Qk+1(xk, uk) = (1− α)Qk(xk, uk) + α[r(xk+1, xk, uk) + γmax
u∈U

Qk(xk+1, u)], (7)

where α ∈ (0, 1] is the learning rate and γ ∈ (0, 1] is the discount factor.
The remaining term to be defined in (4) is ζ. In the following, we present two alternative choices

for ζ that result into two different algorithms.

4.1. Control-Tutored Q-Learning

This first algorithm based on the CTRL framework is the Control-Tutored Q-Learning (CTQL),
which was first presented in (De Lellis et al., 2021). This algorithm is used to solve regulation
problems and uses a reward with a specific structure. In particular, letting x∗ ∈ X be a goal state,
θ ∈ R>0, and ρ̄ ∈ R>0, we define the prize function

ρ(x) =

{
ρ̄, if ∥x− x∗∥ < θ,

0, otherwise.
(8)

Then, letting d : X → R≥0 be some distance of the argument with respect to x∗, the reward rk in
(3) is given as

r(Xk, Xk−1, Uk−1) = d(Xk−1)− d(Xk) + ρ(Xk), k = 1, . . . , N − 1, (9)

with rN (XN ) = 0. Note that, in (9), Uk−1 does not directly affect the reward but its effect is
propagated through the system dynamics. Furthermore, the term d(Xk−1)−d(Xk) is positive when
at time k the agent gets closer to the goal state x∗, and vice versa. The prize term ρ(Xk) gives a
strong positive reinforcement when a small distance with respect to the goal state is achieved. The
switching criterion ζ in (4) depends on the current state xk, where

ζ is

true, if max
u∈U

Qk(xk, u) > 0,

false, otherwise.
(10)

Additionally, ∀x ∈ X ,∀u ∈ U , we initialize Q0(x, u) = 0. Thus, in the first phase of learning, when
limited information about the environment is available, the control tutor policy πc drives the learning
process. Then, gradually, as the values of the Q-table are updated using (7), the reinforcement
learning policy πrl is preferred.

5



4.2. Probabilistic Control-Tutored Q-Learning

Although we found the CTQL to have better performance with respect to the classical Q-Learning in
certain scenarios (see Section 7), the reward (9) does not satisfy the hypotheses used in the classical
proof of convergence used for the Q-Learning (see, e.g., (Bertsekas and Tsitsiklis, 1996)), as it is
not either non-negative or non-positive.

Moreover, we verified that the CTQL might fail when the reward function is not selected fol-
lowing the structure given in (9). This might depend on the possibility that the reward in (9) shapes
a Q-table where state-action pairs that eventually lead to the goal state (following policy πrl) have
positive values of Q. This is used in the switching condition (10) ; however, a detailed analytical
characterization is beyond the scope of this work and will be the subject of future study. There-
fore, we propose next a simpler probabilistic-based choice for the Boolean condition ζ in (4). We
name the resulting algorithm as probabilistic Control Tutored Q-Learning (pCTQL); differently
from CTQL (cf. (9)), we do not use any specific structure for the reward function to derive the
switching condition between the two policies.

In particular, letting β ∈ [0, 1],

ζ is

{
true, with probability β,

false, otherwise,
(11)

the pCTQL policy is defined as

π(x) =


argmax

u∈U
Qk(x, u), with probability β(1− ϵrl),

argmin
u∈U

∥v(x)− u∥ , with probability ω := (1− β)(1− ϵc),

u ∼ rand(U), otherwise,

(12)

Note that it is also possible to introduce a dependency of the probability β on the current state, time,
or other quantities.

5. Metrics

Here we define several metrics to characterize and compare quantitatively the performance of dif-
ferent control algorithms. Each numerical simulation is run in S ∈ N>0 independent sessions. Each
session is composed of E ∈ N>0 episodes: the learned quantities (e.g., Q-table) are carried over
from one episode to the next, and re-initialized at each session. Each episode consists of a simu-
lation of N ∈ N>0 time steps. We let Jπ

e be the cumulative reward (as given in (3)) obtained in
episode e. Moreover, we let the goal condition be a Boolean proposition that assesses whether the
control goal can be considered as having been achieved in an episode (the specific form of the goal
condition depends on the task at hand). We define the following three metrics to assess the learning
performance.

Definition 1 (Learning metrics) (i) The average cumulative reward is Jπ
avg := 1

E

∑E
e=1 J

π
e . (ii)

Given some integer, E∗ > 0, the terminal episode Et is the smallest episode such that the goal
condition is satisfied for all e ∈ {Et − E∗, . . . , Et}. (iii) The average cumulative reward after
terminal episode is Jπ

avg,t :=
1
Et

∑E
e=Et

Jπ
e .

6



Jπ
avg is a common metric typically used in RL (Duan et al., 2016; Wang et al., 2019). Et is used

to assess when the learning phase might be considered concluded, and thus to evaluate data effi-
ciency; additionally, in the definition of Et, we chose the value E∗ = 30 as that can be considered
an effective indicator of the stabilization of the pendulum in the problem we considered. Jπ

avg,t

describes how performing the controller is, in terms of rewards, once training is completed. Next,
we define two metrics inspired by those commonly used in control theory to assess the transient and
steady-state performance of an algorithm. Let again x∗ be a goal state, let η ∈ R≥0, N− ∈ N>0

with N− < N , and let the goal condition be true if

∃k̄ ∈ [0, N−] : ∥xk − x∗∥ ≤ η, ∀k ∈ [k̄, N ]. (13)

Definition 2 (Control metrics) (i) In an episode, the settling time kg is the smallest value of k̄ that
fulfills (13). (ii) The steady state error is eg := 1

N−kg+1

∑N
k=kg

∥x− x∗∥.

6. Benchmark Description

6.1. Control Problem

As a benchmark problem to compare the performance of the proposed algorithms, we consider the
problem of stabilizing a pendulum in its inverted position, provided by the OpenAI Gym framework
(Brockman et al., 2016; OpenAI, 2019). This problem is particularly representative for two reasons.
(i) As the upward position is unstable and the the system dynamics is nonlinear, this problem is
typically used in control theory as a test for new control strategies (Khalil, 2002). (ii) We will select
a linear feedback controller (v in (5)), which by itself cannot stabilize the pendulum. This means
that any benefit observed when using CTQL and pCTQL will be due to the combination of the
reinforcement learning policy and the model-based one, and not just the latter.

Environment. The pendulum is a rigid rod of length l = 1m, with a homogeneous distribution of
mass m = 1 kg; its moment of inertia is I = ml2/3 and it is affected by gravity, with acceleration
g. We let xk = [x1,k x2,k]

T, where x1,k and x2,k are the angular position and angular velocity
of the pendulum, respectively; x1,k = 0 corresponds to the unstable vertical position. The control
input uk is a torque applied to the pendulum. The discrete-time dynamics is obtained by discretizing
the continuous-time dynamics with a sampling time T = 0.05 s using the forward Euler method.
Unless noted otherwise, the initial condition is the downward stable position x̃0 = [π 0]T.

State and control spaces. The spaces for states and control variable are bounded, so that xk ∈
[−π, π] × [−8, 8], and uk ∈ [−2, 2]. Both spaces are discretized non uniformly, employing a finer
discretization close to the origin of the state space and for small control actions. We verified that
this allows to select values more precisely when close to the regulation point, reducing regulation
error and control energy; on the other hand, a coarser discretization far from the regulation point
yields shorter learning time. Concerning x1,k, the interval

[
−π,−π

9

]
is discretized into 8 equally

spaced values,
(
−π

9 ,−
π
36

]
into 7 values, and

(
− π

36 , 0
]

into 5 values; [0, π] is discretized in an
analogous fashion. Concerning x2,k, [−8,−1] is discretized into 10 values, and (−1, 0] into 9 values
(analogously for [0, 8]). Concerning uk, [−2,−0.2] is discretized into 9 values, and (−0.2, 0] into 4
values (analogously for [0, 2].

7



Iterations. For each set-up, we run S = 10 sessions and average the results. For each session, we
run E = 10000 episodes, composed of N = 400 time steps.

Goal and rewards. The objective is to stabilize the pendulum in its upward position, x∗ = [0 0]T.
Concerning the goal condition in (13), we take N− = 300 and η = 0.05xmax, where xmax :=
∥[π 8]∥. This goal is encoded in two reward functions. The first one is

ra(Xk, Xk−1, Uk−1) = d(Xk−1)− d(Xk) + ρ(Xk), (14)

where d(x) := x21 + 0.1x22, and ρ was given in (8), with ρ̄ = 5 and θ = 0.05. The second reward
function we will consider is the standard Gym reward, i.e.,

rg(Xk, Xk−1, Uk−1) = X2
1,k + 0.1X2

2,k + 0.001U2
k−1. (15)

Hyperparameters. In (7), we take γ = 0.97 and α =
(
1 + e

1000

)− 1
2 , where e is the current

episode (Even-Dar et al., 2003), so that the learning rate decays approximately from 0.7 to 0.3,
over 10000 episodes. In (5) and (6), we take ϵc = ϵrl = 0.03. Concerning β in (11), we
tested β ∈ {0.9990, 0.9948, 0.9897, 0.9485, 0.8969}, which approximately corresponds to ω ∈
{0.001, 0.005, 0.010, 0.050, 0.100} in (12).

Feedback control law. We assume we have partial information on the pendulum dynamics, in the
form of an approximate dynamics f̂ . In particular, f̂ is the linear dynamics that is topologically
equivalent to the nonlinear dynamics of the pendulum, close to the origin [0 0]T (also the goal
state). Namely, f̂ (xk, vk) = Axk + Bvk, where A =

[
0 1+T

3Tg/2l 1

]
and B =

[
0

T/I

]
. From f̂ , we

synthesize the linear controller vk = −Kxk, where K = [5.83 1.83]T. This controller can locally
stabilize the pendulum in its inverted position from nearby initial conditions, and is obtained, for
the sake of simplicity, via a pole placement technique, assigning poles to have an acceptable settling
time. Note that this controller if used on its own is in unable to swing up the pendulum from its
downward asymptotically stable position.

7. Comparison of Learning Performance

Case of reward (14). First, we compare Q-Learning, CTQL and pCTQL with different values
of ω, when using reward (14). The results are reported in Figure 2 in terms of the cumulative
reward per episode Jπ

e and the frequency with which the control tutor is used. Also a quantitative
comparison via the learning and control metrics is reported in Table 1. For the sake of clarity, in
Figure 2 the results of the pCTQL were only plotted for ω = 0.01, as we found that value to give
the best performance overall.

From Table 1, comparing CTQL and pCTQL to Q-Learning, we observe that Et—a measure of
data efficiency—is smaller (by a statistically significant margin) for the CTQL and for the pCTQL
with ω = 0.05; however, the presence of a constant bias from the control tutor in the pCTQL
worsens the overall performances which shows a decreasing trend of Jπ

avg and Jπ
avg as ω increases.

Furthermore, the positive effects of the tutored approaches are also captured in 2.(a), as the reward
curves of pCTQL and CTQL grow earlier than that of Q-Learning. Finally, Figure 2.(b) shows that
CTQL uses the control tutor policy more in the beginning, and progressively less as episodes are
completed.

8



0 2000 4000 6000 8000
e

0

500

1000

1500
J e

(a)

QL
CTQL
pCTQL(0.01)

0 2000 4000 6000 8000
e

0.0

2.5

5.0

7.5

10.0

U
sa

ge
 o

f c
on

tro
l-t

ut
or

 p
er

 e
pi

so
de

 (%
)

(b)
CTQL
pCTQL(0.01)

Figure 2: (a) Cumulative reward per episode Jπ
e , obtained with reward (14). (b) Percentage of steps

the control-tutor policy πc was used in each episode. In both (a) and (b) the solid curves
are the mean of the results of S sessions; for readability, the curves are averaged with
a moving average of 100 samples (taken on the right); shaded areas correspond to the
means plus or minus the standard deviations.

Training metrics Control metrics
ET Jπ

avg Jπ
avg,t kg eg/xmax[·10−3]

QL 2726± 742 1110± 39 1332± 45 112± 20 2.6± 1

CTQL 2028± 241 1195± 58 1336± 38 118± 19 1.5± 0.6

pCTQL (0.1%) 2670± 562 1157± 45 1358± 40 125± 37 2.4± 1.4

pCTQL (0.5%) 2439± 823 1182± 30 1372± 45 120± 25 2.5± 1.5

pCTQL (1%) 2106± 507 1164± 57 1327± 51 110± 25 3.8± 1

pCTQL (5%) 1907± 493 1112± 16 1234± 15 111± 41 1.9± 0.8

pCTQL (10%) 2952± 739 992± 26 1152± 24 105± 21 2.5± 0.8

Table 1: Learning metrics (Definition 1) with reward (14) and control metrics (Definition 2), with
reward (14) and nominal conditions. The means and standard deviations of S sessions are
reported. Values that are statistically significantly different from those of the Q-Learning
are in bold (according to a Welch’s t-test with p-value less than 0.05 (Welch, 1947)).

Case of reward (15) We also compared the performance of Q-Learning and pCTQL when using
reward (15); from Table 2 we see that pCTQL with ω = 0.01 is comparable to Q-Learning in terms
of learning time (Et), yet obtains a larger average reward (Jπ

avg) and average reward after terminal
episode (Jπ

avg,t), confirming the effectiveness of a control tutor-based architecture, even when the
reward has a structure different from (9).

8. Comparison of Control Performance

Nominal conditions. We also compared the algorithms in terms of their control performance at
the end of the learning stage, using the metrics given in Definition 2. The results, using both rewards
(14) and (15) are reported in Tables 1–2 where we show that, as it is desirable, the differences in
settling time (kg) of pCTQL and CTQL with respect to Q-Learning are not statistically significant.

9



Training metrics Control metrics
ET Jπ

avg Jπ
avg,t kg eg/xmax[·10−3]

QL 3207± 767 −1045± 18 −734± 25 137± 78 1.5± 0.6

pCTQL (0.1%) 3188± 692 −1035± 11 −723± 36 126± 40 0.9± 0.3

pCTQL (0.5%) 3711± 835 −1009± 11 −688± 29 150± 76 1.4± 1.2

pCTQL (1%) 3684± 539 −1010± 11 −692± 16 114± 33 0.8± 0.3

pCTQL (5%) 3779± 1098 −1017± 10 −743± 25 107± 20 1.2± 0.6

pCTQL (10%) 4552± 1003 −1028± 11 −777± 23 134± 27 1.2± 0.5

Table 2: Learning metrics (Definition 1) with reward (9) and control metrics (Definition 2) with
reward (9) and nominal conditions. The means and standard deviations of S sessions are
reported. Values that are statistically significantly different from those of the Q-Learning
are in bold (according to a Welch’s t-test with p-value less than 0.05 (Welch, 1947)).

However, when using reward (14) we observed that the CTQL achieves the best (lowest) steady state
error, whereas when using reward (15) the smallest error is given by the pCTQL with ω = 0.01.

Perturbed conditions. To test the robustness of the learned control strategies to changes in the
environment, we generated 1000 set-ups, by varying the initial conditions randomly (with a uniform
distribution) in the state/control spaces, and varying the mass and length of the pendulum by ±5% of
their nominal values, and using the Latin hypercube method (Loh, 1996). The results, not portrayed
here for brevity, show that, as is desirable, we obtain similar settling times for all the set-ups. Also,
concerning the steady state error, when using reward (14), for all the set-ups, performance remain
centered around the ones obtained under nominal conditions. Instead, when using reward (15),
pCTQL displays a larger error when compared to that obtained under nominal condition (which
was however lower than that of Q-Learning), whereas Q-Learning retains the same mean.

9. Conclusions

We presented a deterministic and a probabilistic Control-Tutored Q-Learning strategy, that integrate
a feedback control law synthesized on a partial model of the plant within a Q-Learning framework to
render the learning process faster and improving the performance of the learnt policies in achieving
a control goal of interest. We compared the control-tutored strategies with a classical Q-Learning
approach using the inverted pendulum stabilization benchmark from OpenAI Gym as a represen-
tative control problem. We found that, when compared to Q-Learning, CTQL requires fewer data
samples and has a larger average reward, while pCTQL yields higher rewards with a comparable
number of data samples; moreover, both CTQL and pCTQL yield lower regulation error when cer-
tain reward functions are used. Our numerical results show that both from a learning and a control
viewpoint using a control-tutored learning approach might be beneficial.

The next step is the derivation of proofs of convergence for the control-tutored algorithms pre-
sented in this paper. Also, we wish to uncover and formally characterize the relationships among
the specific choice of the reward function, the performance of the algorithms and the approximate
system dynamics needed to synthesize the control tutor. We wish to emphasize that embedding a
control tutor in the loop could be used to render more efficient learning strategies other than Q-
Learning. This will also be the subject of future investigation.

10



References

Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. Using inaccurate models in reinforcement
learning. In ICML, pages 1–8, 2006.

Mauricio Fadel Argerich, Jonathan Fürst, and Bin Cheng. Tutor4rl: Guiding reinforcement learn-
ing with external knowledge. In AAAI Spring Symposium: Combining Machine Learning with
Knowledge Engineering (1), 2020.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. NeurIPS, 30:908–918, 2017.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Francesco De Lellis, Giovanni Russo, and Mario di Bernardo. Tutoring reinforcement learn-
ing via feedback control. accepted to European Control Conference, available on arXiv,
arXiv:2012.06863v1, 2021.

Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. ICML, pages 465–472, 2011.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In ICML, pages 1329–1338. PMLR, 2016.

Eyal Even-Dar, Yishay Mansour, and Peter Bartlett. Learning rates for Q-learning. Journal of
Machine Learning Research, 5(1), 2003.

Hassan K Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, 2002.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In ICML, 2018.

Yutong Li, Nan Li, H Eric Tseng, Anouck Girard, Dimitar Filev, and Ilya Kolmanovsky. Safe
reinforcement learning using robust action governor. In Learning for Dynamics and Control,
pages 1093–1104. PMLR, 2021.

Jyh-Ming Lien and Emlyn Pratt. Interactive planning for shepherd motion. In AAAI Spring Sympo-
sium: Agents that Learn from Human Teachers, pages 95–102, 2009.

Wei-Liem Loh. On latin hypercube sampling. The Annals of Statistics, 24(5):2058–2080, 1996.

Nikolai Matni, Alexandre Proutiere, Anders Rantzer, and Stephen Tu. From self-tuning regulators
to reinforcement learning and back again. CDC, pages 3724–3740, 2019.

Hung The Nguyen, Matthew Garratt, Lam Thu Bui, and Hussein Abbass. Apprenticeship learning
for continuous state spaces and actions in a swarm-guidance shepherding task. In 2019 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 102–109. IEEE, 2019.

11



Rui Nian, Jinfeng Liu, and Biao Huang. A review on reinforcement learning: Introduction and
applications in industrial process control. Computers & Chemical Engineering, 139:106886,
2020.

OpenAI. OpenAI Gym Pendulum-v0, 2019. URL https://github.com/openai/gym/
blob/master/gym/envs/classic_control/pendulum.py.

Mark Pfeiffer, Samarth Shukla, Matteo Turchetta, Cesar Cadena, Andreas Krause, Roland Siegwart,
and Juan Nieto. Reinforced imitation: Sample efficient deep reinforcement learning for mapless
navigation by leveraging prior demonstrations. IEEE Robotics and Automation Letters, 3(4):
4423–4430, 2018.

Meghana Rathi, Pietro Ferraro, and Giovanni Russo. Driving reinforcement learning with models.
Proceedings of SAI Intelligent Systems Conference, pages 70–85, 2020.

Benjamin Recht. A tour of reinforcement learning: The view from continuous control. Annual
Review of Control, Robotics, and Autonomous Systems, 2:253–279, 2019.

Nakarin Suppakun and Thavida Maneewarn. Coaching: accelerating reinforcement learning
through human-assisted approach. Progress in Artificial Intelligence, 9(2):155–169, 2020.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. available on arXiv, arXiv:1907.02057, 2019.

Bernard L Welch. The generalization of ‘student’s’problem when several different population var-
lances are involved. Biometrika, 34(1-2):28–35, 1947.

Mario Zanon and Sébastien Gros. Safe reinforcement learning using robust MPC. IEEE Transac-
tions on Automatic Control, 66:3638–3652, 2021.

Huixin Zhan, Feng Tao, and Yongcan Cao. Human-guided robot behavior learning: A gan-assisted
preference-based reinforcement learning approach. IEEE Robotics and Automation Letters, 6(2):
3545–3552, 2021.

12

https://github.com/openai/gym/blob/master/gym/envs/classic_control/pendulum.py
https://github.com/openai/gym/blob/master/gym/envs/classic_control/pendulum.py

	Introduction
	Related Work
	Mathematical Preliminaries
	Control Tutored Reinforcement Learning
	Control-Tutored Q-Learning
	Probabilistic Control-Tutored Q-Learning

	Metrics
	Benchmark Description
	Control Problem

	Comparison of Learning Performance
	Comparison of Control Performance
	Conclusions

