Noname manuscript No.
(will be inserted by the editor)

EMMA: Epidemic Messaging Middleware for Ad hoc networks

Mirco Musolesi, Cecilia Mascolo, Stephen Hailes

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom

e-mail: {m.musolesil|c.mascolol|s.hailes}@cs.ucl.ac.uk

The date of receipt and acceptance will be inserted by the editor

Abstract The characteristics of mobile environments,
with the possibility of frequent disconnections and fluc-
tuating bandwidth, have forced a rethink of traditional
middleware. In particular, the synchronous communica-
tion paradigms often employed in standard middleware
do not appear to be particularly suited to ad hoc envi-
ronments, in which not even the intermittent availability
of a backbone network can be assumed. Instead, asyn-
chronous communication seems to be a generally more
suitable paradigm for such environments. Message ori-
ented middleware for traditional systems has been de-
veloped and used to provide an asynchronous paradigm
of communication for distributed systems, and, recently,
also for some specific mobile computing systems.

In this paper, we present our experience in designing,
implementing and evaluating EMMA (Epidemic Messag-
ing Middleware for Ad hoc networks), an adaptation of
Java Message Service (JMS) for mobile ad hoc environ-
ments, discussing in details the design challenges and the
solutions that have been adopted.

Key words Message oriented middleware — middle-
ware for mobile computing — epidemic protocol — mobile
ad hoc networks

1 Introduction

With the increasing popularity of mobile devices and
their widespread adoption, there is a clear need to al-
low the development of a broad spectrum of applications
that operate effectively over such an environment. Un-
fortunately, this is far from simple: mobile devices are
increasingly heterogeneous in terms of processing capa-
bilities, memory size, battery capacity, and network in-
terfaces. Each such configuration has substantially dif-
ferent characteristics that are both statically different —
for example, there is a major difference in capability be-
tween a Berkeley mote and an 802.11g-equipped laptop —

and that vary dynamically, as in situations of fluctuating
bandwidth and intermittent connectivity. Mobile ad hoc
environments have an additional element of complexity
in that they are entirely decentralised.

In order to craft applications for such complex envi-
ronments, an appropriate form of middleware is essen-
tial if cost effective development is to be achieved. In
this paper, we examine one of the foundational aspects
of middleware for mobile ad hoc environments: that of
the communication primitives.

Traditionally, the most frequently used middleware
primitives for communication assume the simultaneous
presence of both end points on a network, since the sta-
bility and pervasiveness of the networking infrastructure
is not an unreasonable assumption for most wired envi-
ronments. In other words, most communication paradigms
are synchronous: object oriented middleware such as Java
RMI and CORBA are typical examples of middleware
based on synchronous communication.

In recent years, there has been growing interest in
platforms based on asynchronous communication, such
as publish-subscribe systems [0]: these have been ex-
ploited very successfully where there is application level
asynchronicity. This is an extract from a Gartner Mar-
ket Report [7]: “Given message-oriented middleware’s
(MOM) popularity, scalability, flexibility, and affinity
with mobile and wireless architectures, by 2004, MOM
will emerge as the dominant form of communication mid-
dleware for linking mobile and enterprise applications
(0.7 probability)...”. Moreover, in mobile ad hoc systems,
the likelihood of network fragmentation means that syn-
chronous communication may in any case be imprac-
ticable, giving situations in which delay tolerant asyn-
chronous traffic is the only form of traffic that could be
supported. Middleware for mobile ad hoc environments
must therefore support semi-synchronous or completely
asynchronous communication primitives if it is to avoid
substantial limitations to its utility. Aside from the in-
tellectual challenge in supporting this model, this work
is also interesting because there are a number of prac-

tical application domains in allowing inter-community
communication in undeveloped areas of the globe. Thus,
for example, projects that have been carried out to help
populations that live in remote places of the globe such
as Lapland [3] or in poor areas that lack fixed connec-
tivity infrastructure [9].

There have been attempts to provide mobile middle-
ware with these properties, including STEAM, LIME,
XMIDDLE, Bayou (see [1I] for a more complete review
of mobile middleware). These models differ quite consid-
erably from the existing traditional middleware in terms
of primitives provided. Furthermore, some of them fail
in providing a solution for the true ad hoc scenarios.

If the projected success of MOM becomes anything
like a reality, there will be many programmers with ex-
perience of it. The ideal solution to the problem of mid-
dleware for ad hoc systems is, then, to allow program-
mers to utilise the same paradigms and models pre-
sented by common forms of MOM and to ensure that
these paradigms are supportable within the mobile en-
vironment. This approach has clear advantages in al-
lowing applications developed on standard middleware
platforms to be easily deployed on mobile devices. In-
deed, some research has already led to the adaptation
of traditional middleware platforms to mobile settings,
mainly to provide integration between mobile devices
and existing fixed networks in a nomadic (i.e., mixed)
environment [4]. With respect to message oriented mid-
dleware, the current implementations, however, either
assume the existence of a backbone network to which
the mobile hosts connect from time to time while roam-
ing [10], or assume that nodes are always somehow reach-
able through a path [20]. No adaptation to heterogeneous
or completely ad hoc scenarios, with frequent disconnec-
tion and periodically isolated clouds of hosts, has been
attempted.

In the remainder of this paper we describe an initial
attempt to adapt message oriented middleware to suit
mobile and, more specifically, mobile ad hoc networks.
In our case, we elected to examine JMS, as one of the
most widely known MOM systems. In the latter part of
this paper, we explore the limitations of our results and
describe the plans we have to take the work further.

2 Message Oriented Middleware and Java
Message Service (JMS)

Message-oriented middleware systems support commu-
nication between distributed components via message-
passing: the sender sends a message to identified queues,
which usually reside on a server. A receiver retrieves the
message from the queue at a different time and may ac-
knowledge the reply using the same asynchronous mech-
anism. Message-oriented middleware thus supports asyn-
chronous communication in a very natural way, achiev-
ing de-coupling of senders and receivers. A sender is able

Mirco Musolesi et al.

to continue processing as soon as the middleware has
accepted the message; eventually, the receiver will send
an acknowledgment message and the sender will be able
to collect it at a convenient time. However, given the
way they are implemented, these middleware systems
usually require resource-rich devices, especially in terms
of memory and disk space, where persistent queues of
messages that have been received but not yet processed,
are stored. Sun Java Message Service [5] and IBM Web-
Sphere MQ [6], are examples of very successful message-
oriented middleware for traditional distributed systems.

The Java Messaging Service (JMS) is a collection
of interfaces for asynchronous communication between
distributed components. It provides a common way for
Java programs to create, send and receive messages. JMS
users are usually referred to as clients. The JMS spec-
ification further defines providers as the components in
charge of implementing the messaging system and pro-
viding the administrative and control functionality (i.e.,
persistence and reliability) required by the system. Clients
can send and receive messages, asynchronously, through
the JMS provider, which is in charge of the delivery and,
possibly, of the persistence of the messages.

There are two types of communication supported:
point to point and publish-subscribe models. In the point
to point model, hosts send messages to queues. Receivers
can be registered with some specific queues, and can
asynchronously retrieve the messages and then acknowl-
edge them. The publish-subscribe model is based on the
use of topics that can be subscribed to by clients. Mes-
sages are sent to topics by other clients and are then
received in an asynchronous mode by all the subscribed
clients. Clients learn about the available topics and queues
through Java Naming and Directory Interface (JNDI) [16].

Whilst the JMS specification has been extensively
implemented and used in traditional distributed systems,
adaptations for mobile environments have been proposed
only recently. The challenges of porting JMS to mo-
bile settings are considerable; however, in view of its
widespread acceptance and use, there are considerable
advantages in allowing the adaptation of existing ap-
plications to mobile environments and in allowing the
interoperation of applications in the wired and wireless
regions of a network.

Mobile networks vary very widely in their character-
istics, from nomadic networks in which modes relocate
whilst offline through to ad hoc networks in which modes
move freely and in which there is no infrastructure. Mo-
bile ad hoc networks are most generally applicable in
situations where survivability and instant deployability
are key: most notably in military applications and disas-
ter relief. In between these two types of mobile networks,
there are, however, a number of possible heterogeneous
combinations, where nomadic and ad hoc paradigms are
used to interconnect totally unwired areas to more struc-
tured networks (such as a LAN or the Internet).

EMMA: Epidemic Messaging Middleware for Ad hoc networks

In [10], for example, JMS was adapted to a nomadic
mobile setting, where mobile hosts can be JMS clients
and communicate through the JMS provider that, how-
ever, sits on a backbone network, providing reliability
and persistence. The client prototype presented in [10] is
very lightweight, due to the delegation of all the heavy-
weight functionality to the provider on the wired net-
work. However, this approach is somewhat limited in
terms of widespread applicability and scalability as a
consequence of the concentration of functionality in the
wired portion of the network. If JMS is to be adapted to
completely ad hoc environments, where no fixed infras-
tructure is available, and where nodes change location
and status very dynamically, more issues must be taken
into consideration. In the following section, we will dis-
cuss our experience in designing and implementing JMS
for mobile ad hoc networks.

3 Design of a Message Oriented Middleware for
Mobile Ad hoc Networks

8.1 Adaptation of JMS for Mobile Ad Hoc Networks

We now describe EMMA (Epidemic Messaging Middle-
ware for Ad hoc networks), our initial attempt to adapt
the JMS specification to target the particular require-
ments related to ad hoc scenarios. As discussed in Sec-
tion [2| a JMS application can use either the point to
point and the publish-subscribe styles of messaging.

Point to Point Model The point to point model is
based on the concept of queues, that are used to enable
asynchronous communication between the producer of a
message and possible different consumers. In our solu-
tion, the location of queues is determined by a negotia-
tion process that is application dependent. For example,
let us suppose that it is possible to know a priori, or it is
possible to determine dynamically, that a certain host is
the receiver of the most part of messages sent to a par-
ticular queue. In this case, the optimum location of the
queue may well be on this particular host. In general, it
is worth noting that, according to the JMS specification
and suggested design patterns, it is common and prefer-
able for a client to have all of its messages delivered to
a single queue.

Queues are advertised periodically to the hosts that
are within transmission range or that are reachable by
means of the underlying synchronous communication pro-
tocol, if provided. It is important to note that, at the
middleware level, it is logically irrelevant whether or
not the network layer implements some form of ad hoc
routing (though considerably more efficient if it does);
the middleware only considers information about which
nodes are actively reachable at any point in time. The
hosts that receive advertisement messages add entries
to their JNDI registry. Each entry is characterized by a
lease (a mechanism similar to that present in Jini [I7]). A

lease represents the time of validity of a particular entry.
If a lease is not refreshed (i.e, its life is not extended), it
can expire and, consequently, the entry is deleted from
the registry. In other words, the host assumes that the
queue will be unreachable from that point in time. This
may be caused, for example, if a host storing the queue
becomes unreachable. A host that initiates a discovery
process will find the topics and the queues present in its
connected portion of the network in a straightforward
manner.

In order to deliver a message to a host that is not
currently in reach’} we use an asynchronous epidemic
routing protocol that will be discussed in detail in Sec-
tion If two hosts are in the same cloud (i.e., a con-
nected path exists between them), but no synchronous
protocol is available, the messages are sent using the epi-
demic protocol. In this case, the delivery latency will be
low as a result of the rapidity of propagation of the in-
fection in the connected cloud (see also the simulation
results in Section . Given the existence of an epidemic
protocol, the discovery mechanism consists of advertis-
ing the queues to the hosts that are currently unreach-
able using analogous mechanisms.

Publish-Subscribe Model In the publish-subscribe
model, some of the hosts are similarly designated to hold
topics and store subscriptions, as before. Topics are ad-
vertised through the registry in the same way as are
queues, and a client wishing to subscribe to a topic must
register with the client holding the topic. When a client
wishes to send a message to the topic list, it sends it
to the topic holder (in the same way as it would send a
message to a queue). The topic holder then forwards the
message to all subscribers, using the synchronous pro-
tocol if possible, the epidemic protocol otherwise. It is
worth noting that we use a single message with multiple
recipients, instead of multiple messages with multiple re-
cipients. When a message is delivered to one of the sub-
scribers, this recipient is deleted from the list. In order
to delete the other possible replicas, we employ acknowl-
edgment messages (discussed in Section, returned in
the same way as a normal message.

We have also adapted the concepts of durable and
non durable subscriptions for ad hoc settings. In fixed
platforms, durable subscriptions are maintained during
the disconnections of the clients, whether these are in-
tentional or are the result of failures. In traditional sys-
tems, while a durable subscriber is disconnected from the
server, it is responsible for storing messages. When the
durable subscriber reconnects, the server sends it all un-
expired messages. The problem is that, in our scenario,
disconnections are the norm rather than the exception.
In other words, we cannot consider disconnections as

! In theory, it is not possible to send a message to a peer
that has never been reachable in the past, since there is no
entry present in the registry. However, to overcome this limi-
tation, we provide a primitive through which information can
be added to the registry.

failures. For these reasons, we adopt a slightly different
semantics. With respect to durable subscriptions, if a
subscriber becomes disconnected, notifications are not
stored but are sent using the epidemic protocol rather
than the synchronous protocol. In other words, durable
notifications remain valid during the possible disconnec-
tions of the subscriber.

On the other hand, if a non-durable subscriber be-
comes disconnected, its subscription is deleted; in other
words, during disconnections, notifications are not sent
using the epidemic protocol but exploit only the syn-
chronous protocol. If the topic becomes accessible to this
host again, it must make another subscription in order
to receive the notifications.

Unsubscription messages are delivered in the same
way as are subscription messages. It is important to note
that durable subscribers have explicitly to unsubscribe
from a topic in order to stop the notification process;
however, all durable subscriptions have a predefined ex-
piration time in order to cope with the cases of sub-
scribers that do not meet again because of their move-
ments or failures. This feature is clearly provided to limit
the number of the unnecessary messages sent around the
network.

3.2 Message Delivery using Epidemic Routing

In this section, we examine one possible mechanism that
will allow the delivery of messages in a partially con-
nected network. The mechanism we discuss is intended
for the purposes of demonstrating feasibility; more effi-
cient communication mechanisms for this environment
are themselves complex, and are the subject of another
paper [14].

The asynchronous message delivery described above
is based on a typical pure epidemic-style routing proto-
col [I8]. A message that needs to be sent is replicated on
each host in reach. In this way, copies of the messages are
quickly spread through connected networks, like an in-
fection. If a host becomes connected to another cloud of
mobile nodes, during its movement, the message spreads
through this collection of hosts. Epidemic-style replica-
tion of data and messages has been exploited in the past
in many fields starting with the distributed database sys-
tems area [2].

Within epidemic routing, each host maintains a buffer
containing the messages that it has created and the repli-
cas of the messages generated by the other hosts. To im-
prove the performance, a hash-table indexes the content
of the buffer. When two hosts connect, the host with
the smaller identifier initiates a so-called anti-entropy
session, sending a list containing the unique identifiers
of the messages that it currently stores. The other host
evaluates this list and sends back a list containing the
identifiers it is storing that are not present in the other
host, together with the messages that the other does not

Mirco Musolesi et al.

have. The host that has started the session receives the
list and, in the same way, sends the messages that are not
present in the other host. Should buffer overflow occur,
messages are dropped.

The reliability offered by this protocol is typically
best effort, since there is no guarantee that a message
will eventually be delivered to its recipient. Clearly, the
delivery ratio of the protocol increases proportionally to
the maximum allowed delay time and the buffer size in
each host (interesting simulation results may be found
in [I8]).

3.3 Adaptation of the JMS Message Model

In this section, we will analyse the aspects of our adap-
tation of the specification related to the so-called JMS
Message Model [B]. According to this, JMS messages
are characterised by some properties defined using the
header field, which contains values that are used by both
clients and providers for their delivery. The aspects dis-
cussed in the remainder of this section are valid for both
models (point to point and publish-subscribe).

A JMS message can be persistent or non-persistent.
According to the JMS specification, persistent messages
must be delivered with a higher degree of reliability than
the non-persistent ones. However, it is worth noting that
it is not possible to ensure once-and-only-once reliability
for persistent messages as defined in the specification,
since, as we discussed in the previous subsection, the
underlying epidemic protocol can guarantee only best-
effort delivery. However, clients maintain a list of the
identifiers of the recently received messages to avoid the
delivery of message duplicates. In other words, we pro-
vide the applications with at-most-once reliability for
both types of messages.

In order to implement different levels of reliability,
EMMA treats persistent and non-persistent messages
differently, during the execution of the anti-entropy epi-
demic protocol. Since the message buffer space is limited,
persistent messages are preferentially replicated using
the available free space. If this is insufficient and non-
persistent messages are present in the buffer, these are
replaced. Only the successful deliveries of the persistent
messages are notified to the senders.

According to the JMS specification, it is possible to
assign a priority to each message. The messages with
higher priorities are delivered in a preferential way. As
discussed above, persistent messages are prioritised above
the non-persistent ones. Further selection is based on
their priorities. Messages with higher priorities are treated
in a preferential way. In fact, if there is not enough space
to replicate all the persistent messages, a mechanism
based on priorities is used to delete and replicate non-
persistent messages (and, if necessary, persistent mes-
sages).

Messages are deleted from the buffers using the ex-
piration time values that can be set by senders. This

EMMA: Epidemic Messaging Middleware for Ad hoc networks

is a way to free space in the buffers (one preferentially
deletes older messages in cases of conflict); to eliminate
stale replicas in the system; and to limit the time for
which destinations must hold message identifiers to dis-
pose of duplicates.

8.4 Reliability and Acknowledgment Mechanisms

As already discussed, at-most-once message delivery is
the best that can be achieved in terms of delivery seman-
tics in partially connected ad hoc settings. However, it
is possible to improve the reliability of the system with
efficient acknowledgment mechanisms. EMMA provides
a mechanism for failure notification to applications if the
acknowledgment is not received within a given timeout
(that can be configured by application developers). This
mechanism is the one that distinguishes the delivery of
persistent and non-persistent messages in our JMS im-
plementation: the deliveries of the former are notified to
the senders, whereas the latter are not.

We use acknowledgment messages not only to inform
senders about the successful delivery of messages but
also to delete the replicas of the delivered messages that
are still present in the network. Each host maintains a
list of the messages successfully delivered that is updated
as part of the normal process of information exchange
between the hosts. The lists are exchanged during the
first steps of the anti-entropic epidemic protocol with
a certain predefined frequency. In the case of messages
with multiple recipients, a list of the actual recipients is
also stored. When a host receives the list, it checks its
message buffer and updates it according to the follow-
ing rules: (1) if a message has a single recipient and it
has been delivered, it is deleted from the buffer; (2) if
a message has multiple recipients, the identifiers of the
delivered hosts are deleted from the associated list of re-
cipients. If the resulting length of the list of recipients is
zero, the message is deleted from the buffer.

These lists have, clearly, finite dimensions and are im-
plemented as circular queues. This simple mechanism,
together with the use of expiration timestamps, guar-
antees that the old acknowledgment notifications are
deleted from the system after a limited period of time.

In order to improve the reliability of EMMA, a design
mechanism for intelligent replication of queues and top-
ics based on the context information could be developed.
However this is not yet part of the current architecture
of EMMA.

4 Implementation and Evaluation

We have implemented a prototype of our platform us-
ing the J2ME Personal Profile [I5]. The size of the ex-
ecutable is about 250KB including the JMS 1.1 jar file;
this is a perfectly acceptable figure given the available
memory of the current mobile devices on the market.

The communication infrastructure is based on sockets.
We have tested our prototype on HP IPaq PDAs run-
ning Linux and interconnected with WaveLan and on a
number of laptops with the same network interface.

We also evaluated the middleware platform using the
OMNET++ discrete event simulator [I9] in order to
have some simulation results considering scenario com-
posed of a realistic number of hosts. This environment
offers broad functionalities that facilitate the develop-
ment and the optimisation of the simulation code.

4.1 Description of the simulation

We simulated the delivery of messages using the epi-
demic protocol in the case of one recipient (i.e., topic
subscriptions and point to point message delivery) and
in the case of multiple recipients (i.e, notifications to
multiple subscribers). We assumed that no synchronous
protocol is present in the underlying network layer. We
used a group mobility model with movement patterns
similar to those described in [I3] We evaluated the per-
formance of the system in terms of the delivery ratios
and delays of persistent messages by sending 200 mes-
sages (50% persistent and 50% non persistent, with dif-
ferent priorities). Furthermore, we analysed the impact
of the use of priorities in a different simulation scenario,
sending 300 persistent messages in three priority classes
(100 messages for each class). We performed this simu-
lation in order to understand the influence of priorities;
moreover, the case of persistent messages only in the sys-
tem is an interesting limit case. In all the simulations,
the priority and the type of persistence of each message
are generated using uniform distributions.

The intervals between each message are modelled as a
Poisson process. All the messages are sent in 20 seconds.
The sender and receiver of each message are chosen ran-
domly. The buffer for each node is set to 100 messages,
unless otherwise specified. In the case of subscriber no-
tifications, we set the number of recipients to 80% of the
number of hosts; this scenario allows us to evaluate the
performance of the delivery mechanisms based on the
dissemination of the messages using the epidemic proto-
col. We consider three mobile scenarios composed of 16,
24 and 32 hosts in a 1 km? simulation area. We assume
an omnidirectional antenna that transmits according to
a free space model with a transmission range equal to
200 m. The maximum allowed delay time is set to four
minutes.

4.2 Analysis of results

In this subsection we analyse the results of our simula-
tions, presenting the performance of our platform and
discussing the variation of some performance indicators
as functions of the density of hosts (i.e., the number

50 — Non persistent
= Persistent

Delivery ratio (%)

10 20 30 40 50 60 70 80 90 100
Buffer size

Fig. 1 Point to point model (scenario with 32 hosts): deliv-
ery ratio of persistent and non persistent messages vs buffer
size.

@
3

n
&

N
S

~Non persistent
-~ Persistent

Number of messages
3 @

@

0 \5%13:&*

IR RIS RO I

Delay time (sec)

Fig. 2 Point to point model (32 hosts scenario): delay time
distribution of persistent and non persistent messages.

~Low priority
-+ Medium priority
- High priorit

Delivery ratio (%)
S nw s o
238888

10 20 30 40 50 60 70 80 90 100
Buffer size

Fig. 3 Point to point model (32 hosts scenario): delivery
ratio of persistent messages with different priorities vs buffer
size.

of the hosts in the simulation area) and the size of the
buffers used to store messages.

Point to point model Figure[I]shows the dependency of
the delivery ratio of persistent and non persistent mes-
sages on the buffer size, in the case of a scenario with
32 hosts. As expected, the buffer size has a strong im-
pact on the performance of the platform. Therefore, the
choice of the correct dimension of the buffer is a key
aspect of the deployment of the platform. However, in
general, the maximum size of buffers is also constrained
by the limited amount of available memory of mobile
devices. Figure [2] shows the distribution of the average
delay for the point to point delivery (32 hosts scenario);
a proportion of the messages are delivered more or less
immediately, since the recipients are in the same cloud

Mirco Musolesi et al.

— Non persistent
—~ Persistent

Number of messages

S R A Y

RO SRR A N R R
& ¢ o o 9 o o o o
IS S S S SRR S

Delivery ratio

Fig. 4 Publish-Subscribe model (32 hosts scenario): delivery
ratio distribution of persistent and non persistent messages.

o 45
S 40
3 35 ~20
g 20 =40
5 25 ~60
g 20 80
g 15 100
5 10
Z s

0

o S0 g6 g g oo
P FEF
R & & O

Delivery ratio

Fig. 5 Publish-subscribe model (32 hosts scenario): delivery
ratio distribution of persistent messages vs buffer size.

g 45
S A

@ 354

g 30 ~16
& 251 ~24
5 201 ~32
3 15

E 104

z 5

0

\;\3\°\;§\°\;§§\°\;§\° y§§,\e (ég,\e A(g\o\fbg\o o @S\o
IR R R AP R R
R A R

Delivery ratio

Fig. 6 Publish-subscribe model (32 hosts scenario): deliv-
ery ratio distribution of persistent messages vs population
density.

as the sender. Figure [3] shows the delivery ratio of per-
sistent messages with different priorities (300 persistent
messages with three uniformly distributed levels of pri-
orities as described above, with a buffer size equal to
100).

Publish-Subscribe model Figure [] shows the distribu-
tion of the delivery ratio of persistent and non persis-
tent messages in a 32 hosts scenario. In the case of the
publish-subscribe model, the term delivery ratio indi-
cates the average percentage of the potential recipients
that actually received the message. Figures [5| shows the
distributions of the delivery ratio of persistent and non
persistent messages with multiple recipients with respect
to buffer size, respectively (in the case of the scenario
with 32 hosts). In Figure @ a graphical representation
of the variation of the delivery ratio with respect to

EMMA: Epidemic Messaging Middleware for Ad hoc networks

the population density (considering scenarios with 16,
24 and 32 hosts, with a buffer size equal to 100) is pre-
sented. As expected, the delivery ratio increases as the
population density increases.

The simulation results show that the performance
provided by the platform in terms of delivery ratio and
delay of persistent messages and messages with higher
priorities is good. This is a direct consequence of the
exploitation of epidemic techniques [I8]. However, it is
worth noting that, in general, it is quite difficult to of-
fer high degree of scalability in peer-to-peer middleware
for mobile computing due to the characteristics of the
devices (limited memory to store temporarily messages)
and the number of possible interconnections in ad hoc
settings. Nevertheless, the number of nodes of many po-
tential application scenarios that could be envisaged, is
quite limited due to the intrinsic communication pat-
terns and organisational boundaries. Moreover, it is worth
noting that the dimension of the buffer may be chosen
both in accordance with the application requirements
and considering the resources of the devices.

For larger application scenarios, where the number of
hosts is considerably higher or where the messages ex-
changed are in high number, we are studying a variation
of the delivery mechanism presented that uses proba-
bilistic and statistical techniques to reduce the number
of message replicas present at the same time in the sys-
tem [I4]. The description of the protocol is however out-
side the scope of this paper.

5 Discussion and Related Work

The design of middleware platforms for mobile comput-
ing requires researchers to answer new and fundamen-
tally different questions; simply assuming the presence
of wired portions of the network on which centralised
functionality can reside is not generalisable. Thus, it is
necessary to investigate novel design principles and to
devise architectural patterns that differ from those tra-
ditionally exploited in the design of middleware for fixed
systems.

As an example, consider the recent cross-layering trend
in ad hoc networking [I]. This is a way of re-thinking
software systems design, explicitly abandoning the clas-
sical forms of layering, since, although this separation of
concerns afford portability, it does so at the expense of
potential efficiency gains. We believe that it is possible
to view our approach as an instance of cross-layering.
In fact, we have added the epidemic network protocol at
middleware level and, at the same time, we have used the
existing synchronous network protocol if present both
in delivering messages (traditional layering) and in in-
forming the middleware about when messages may be
delivered by revealing details of the forwarding tables
(layer violation). For this reason, we prefer to consider
them jointly as the communication layer of our platform
together providing more efficient message delivery.

Another interesting aspect is the exploitation of con-
text and system information to improve the performance
of mobile middleware platforms. Again, as a result of
adopting a cross-layering methodology, we are able to
build systems that gather information from the underly-
ing operating system and communication components in
order to allow for adaptation of behaviour. We can sum-
marise this conceptual design approach by saying that
middleware platforms must be not only context-aware
(i.e., they should be able to extract and analyse infor-
mation from the surrounding context) but also system-
aware (i.e., they should be able to gather information
from the software and hardware components of the mo-
bile system).

A number of middleware systems have been devel-
oped to support ad hoc networking with the use of asyn-
chronous communication [I1] (such as LIME, XMID-
DLE, STEAM). In particular, the STEAM [I2] platform
is an example of event-based middleware for ad hoc net-
works, providing location-aware message delivery and an
effective solution for event filtering. In STEAM the com-
munication is limited to the hosts that are in the same
radio range. STEAM offers an interesting content-based
model, but its possible applications are limited to spe-
cific scenarios, where the interaction among hosts be-
longing to different clouds is not necessary. EMMA, in-
stead, supports communication also among hosts that
are intermittently disconnected.

A discussion of JMS, and its mobile realisation, has
already been conducted in Section [2| The Swiss com-
pany Softwired has developed the first JMS middleware
for mobile computing, called iBus Mobile [10]. The main
components of this typically infrastructure-based archi-
tecture are the JMS provider, the so-called mobile JMS
gateway, which is deployed on a fixed host and a lightweight
JMS client library. The gateway is used for the communi-
cation between the application server and mobile hosts.
The gateway is seen by the JMS provider as a normal
JMS client.

Pronto [2]] is an example of middleware system based
on messaging that is specifically designed for mobile en-
vironments. The platform is composed of three classes of
components: mobile clients implementing the JMS spec-
ification, gateways that control traffic, guaranteeing ef-
ficiency and possible user customizations using different
plug-ins and JMS servers. Moreover, different configura-
tions of these components are possible. Pronto represents
a good solution for infrastructure-based mobile networks
but it does not adequately target ad hoc settings, since
mobile nodes rely on fixed servers for the exchange of
messages.

Other MOM implemented for mobile environments
exist; however, they are usually straightforward exten-
sions of existing middleware such as [§]. The only imple-
mentation of MOM specifically designed for mobile ad
hoc networks was developed at the University of Newcas-
tle [20]. This work is again a JMS adaptation; the focus

of that implementation is on group communication and
the use of application level routing algorithms for topic
delivery of messages. However, there are a number of dif-
ferences in the focus of our work. The importance that
we attribute to disconnections makes persistence a vital
requirement for any middleware that needs to be used in
mobile ad hoc networks. The authors of [20] signal per-
sistence as possible future work, not considering the fact
that routing a message to a non-connected host will re-
sult in delivery failure. This is a remarkable limitation in
mobile settings where unpredictable disconnections are
the norm rather than the exception.

6 Conclusions

Asynchronous communication is a useful paradigm for
mobile ad hoc networks, as hosts are allowed to come,
go and pick up messages when convenient, also taking ac-
count of their resource availability (e.g., power, connec-
tivity levels). We have described EMMA that represents
a proof of concept adaptation of JMS to the extreme
scenario of partially connected mobile ad hoc networks.

We have described and discussed the characteristics
and differences of our solution with respect to traditional
JMS implementations and the existing adaptations for
mobile settings. EMMA provides very good performance
in terms of delivery ratio and latency. However, trade-
offs between application-level routing and resource usage
should also be investigated, as mobile devices are com-
monly power /resource scarce. In fact, a key limitation of
this work is the poorly performing epidemic algorithm
in terms of the number of replicas that are spread across
the network. An important advance in the practicability
of this work requires an algorithm that better balances
the needs of efficiency and message delivery probability.
We are currently working on algorithms and protocols
that, exploiting probabilistic and statistical techniques
on the basis of small amounts of exchanged information,
are able to improve considerably the efficiency in terms
of resources (memory, bandwidth, etc) and the reliability
of our middleware platform [T4].

References

1. M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-
layering in Mobile ad Hoc Network Design. IEEE Com-
puter, 37(2):48-51, February 2004.

2. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic Algorithms for Replicated Database Maintenance.
In Sizth Symposium on Principles of Distributed Com-
puting, pages 1-12, August 1987.

3. A. Doria, M. Uden, and D. P. Pandey. Providing connec-
tivity to the Saami nomadic community. In Proceedings
of the Second International Conference on Open Col-
laborative Design for Sustainable Innovation, December
2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Mirco Musolesi et al.

. M. Haahr, R. Cunningham, and V. Cahill. Supporting

CORBA applications in a Mobile Environment. In Pro-
ceedings of MOBICOM’99), pages 36-47. ACM, August
1999.

M. Hapner, R. Burridge, R. Sharma, J. Fialli, and
K. Stout. Java Message Service Specification Ver-
sion 1.1 Sun Microsystems, Inc., April 2002.
http://java.sun.com/products/jms/.

J. Hart. WebSphere MQ: Connecting your applications
without complex programming. IBM WebSphere Soft-
ware White Papers, 2003.

S. Hayward and M. Pezzini. Marrying Middleware and
Mobile Computing. Gartner Group Research Report,
September 2001.

IBM. WebSphere ~ M@ EveryPlace Ver-
sion 2.0, November 2002. http://www-
3.ibm.com/software/integration/wmgqe/.

ITU. Connecting remote communities. Documents

of the World Summit on Information Society, 2003.
http://www.itu.int/osg/spu/wsis-themes.

S. Maffeis. Introducing Wireless JMS. Softwired AG,
www.sofwired-inc.com, 2002.

C. Mascolo, L. Capra, and W. Emmerich. Middleware
for Mobile Computing. In E. Gregori, G. Anastasi, and
S. Basagni, editors, Advanced Lectures on Networking,
volume 2497 of Lecture Notes in Computer Science, pages
20-58. Springer Verlag, 2002.

R. Meier and V. Cahill. STEAM: Event-Based Mid-
dleware for Wireless Ad Hoc Networks. In 22nd Inter-
national Conference on Distributed Computing Systems
Workshops (ICDCSW 02), pages 639-644, June 2002.
M. Musolesi, S. Hailes, and C. Mascolo. An ad hoc
mobility model founded on social network theory. In
Proceedings of the Tth ACM international symposium on
Modeling, analysis and simulation of wireless and mobile
systems, pages 2024, Venice, Italy, October 2004. ACM
Press.

M. Musolesi, S. Hailes, and C. Mascolo. Adaptive rout-
ing for intermittently connected mobile ad hoc networks.
Technical report, UCL-CS Research Note, November
2004. Submitted for Publication.

Sun Microsystems. J2ME Personal Profile Documenta-
tion. http://java.sun.com/products/personalprofile/.
Sun Microsystems. Java Naming and Directory In-
terface (JNDI) Documentation Version 1.2. 2003.
http://java.sun.com/products/jndi/.

Sun Microsystems. Jini Specification Version 2.0, 2003.
http://java.sun.com/products/jini/.

A. Vahdat and D. Becker. Epidemic routing for Partially
Connected Ad Hoc Networks. Technical Report CS-2000-
06, Dept. of Computer Science, Duke University, 2000.
A. Varga. The OMNeT++ discrete event simulation sys-
tem. In Proceedings of the European Simulation Multi-
conference (ESM’2001), Prague, June 2001.

E. Vollset, D. Ingham, and P. Ezhilchelvan. JMS on Mo-
bile Ad-Hoc Networks. In Personal Wireless Communi-
cations (PWC), pages 40-52, Venice, September 2003.
E. Yoneki. Pronto: MobileGateway with Publish-
Subscribe Paradigm over Wireless Networks. In Middle-
ware’03 - Work in Progress Session, number 4(5), IEEE
Distributed Systems Online 2003.

	Introduction
	Message Oriented Middleware and Java Message Service (JMS)
	Design of a Message Oriented Middleware for Mobile Ad hoc Networks
	Implementation and Evaluation
	Discussion and Related Work
	Conclusions

