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Abstract
Solving the problem of cooperation is fundamentally important for the creation and main-
tenance of functional societies. Problems of cooperation are omnipresent within human 
society, with examples ranging from navigating busy road junctions to negotiating trea-
ties. As the use of AI becomes more pervasive throughout society, the need for socially 
intelligent agents capable of navigating these complex cooperative dilemmas is becoming 
increasingly evident. Direct punishment is a ubiquitous social mechanism that has been 
shown to foster the emergence of cooperation in both humans and non-humans. In the nat-
ural world, direct punishment is often strongly coupled with partner selection and reputa-
tion and used in conjunction with third-party punishment. The interactions between these 
mechanisms could potentially enhance the emergence of cooperation within populations. 
However, no previous work has evaluated the learning dynamics and outcomes emerg-
ing from multi-agent reinforcement learning populations that combine these mechanisms. 
This paper addresses this gap. It presents a comprehensive analysis and evaluation of the 
behaviors and learning dynamics associated with direct punishment, third-party punish-
ment, partner selection, and reputation. Finally, we discuss the implications of using these 
mechanisms on the design of cooperative AI systems.
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1  Introduction

The evolution of cooperation has played a pivotal role in the success of the human species, 
enabling the development of complex societies capable of performing extraordinary feats 
of collaboration to achieve collectively beneficial outcomes. As such, problems of coopera-
tion occur at all levels of human society, from drivers contemplating whether to give way at 
busy junctions, to world leaders negotiating carbon reduction targets [1]. Therefore, as the 
use of artificial intelligence within society becomes more pervasive, the need for socially 
intelligent agents capable of navigating these complex cooperative dilemmas is becoming 
increasingly evident [1, 2]. However, the development of socially intelligent agents is chal-
lenging, as cooperation is a complex cognitive skill [3]. The factors that influence its evolu-
tion are still not well understood [4, 5], despite the intense interest in this problem over the 
past decades [6–9].

Social mechanisms are powerful tools that can influence the behaviors of populations 
towards socially responsible choices [1, 10–12]. These mechanisms include punishment 
[13–15], partner selection [16–21], and reputation [22–25]. Consequently, numerous 
studies have proposed the use of these social mechanisms within artificial populations to 
develop cooperative AI systems [1, 5, 26–30].

Although reputation and partner selection can facilitate the emergence of cooperation 
within small groups, they have a negligible impact on larger populations. Instead, the use 
of direct and third-party punishment against norm violators has been proposed as a key fac-
tor in the emergence of large-scale non-kin cooperation observed within human societies 
[13, 15, 27, 31, 32]. Direct punishment is particularly interesting in the study of coopera-
tion. Unlike third-party punishment, it has also been observed in non-human populations 
[13, 32], indicating that direct punishment may be a simpler, yet effective, mechanism for 
promoting cooperation.

In the natural world, the use of punishment is strongly coupled with the related social 
mechanisms of partner selection and reputation. Their collective dynamics may aid the 
emergence of cooperation in societies and incentivize the use of costly punishment to 
resolve the second-order free rider problem [13, 33]. This combination can also result in 
competition between agents, which has been associated with the development of unjust 
punishment of cooperators, potentially detrimental to the emergence of cooperation [34].

Despite the rich connections that exist between these social mechanisms and prior work 
showing that combinations of other social mechanisms can benefit the emergence of coop-
eration [29, 35, 36], to the best of our knowledge, no existing work has studied the learn-
ing dynamics that emerge from combining direct and third-party punishment with partner 
selection and reputation in Multi-Agent Reinforcement Learning (MARL) populations. 
Furthermore, many of the existing studies on punishment do not model the development of 
unjust punishment or second-order free-riding in their environments [13, 15, 28, 37].

This paper addresses these gaps by presenting a systematic study on the impact of pun-
ishment and related social mechanisms on the learning dynamics and behaviors that emerge 
within populations of MARL agents. It provides an in-depth discussion of the implications 
of applying these mechanisms to artificial populations. This can guide researchers and 
practitioners when designing cooperative AI systems that involve social mechanisms. The 
main contributions of this work are as follows:

•	 A systematic analysis and evaluation of the learning dynamics and outcomes that 
emerge from MARL populations using different combinations of direct punishment, 
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third-party punishment, partner selection, and reputation, including populations that 
use both direct and third-party punishment.

•	 An examination of the dynamics of just and unjust punishment that emerge from the 
competitive environment created by combining punishment, partner selection, and rep-
utation.

•	 Results showing that direct punishment, when offering a net reward to just punishers, 
is effective at promoting the emergence of cooperation within populations, and that the 
effectiveness of direct punishment is improved when it is combined with partner selec-
tion and reputation. While third-party punishment leads to a higher proportion of coop-
eration at equilibrium compared to direct punishment, the combined use of third-party 
and direct punishment achieves the highest level of societal cooperation in the fewest 
number of episodes. However, populations using direct punishment achieve signifi-
cantly higher levels of societal reward, indicating that direct punishment is most effec-
tive at maximizing global welfare through cooperation.

2 � Background and related work

Cooperation is defined as several self-interested agents performing actions that jointly 
improve the welfare of an entire group. The natural world is filled with examples of coop-
eration between self-interested organisms that enable the pursuit of goals beyond the reach 
of isolated individuals [1]. However, cooperating can often appear illogical for individuals, 
particularly in situations known as social dilemmas.

Social dilemmas embody conflicts between choices that maximize individual payoffs 
and those that maximize group payoffs [4, 38]. Each individual’s payoff for a non-coopera-
tive choice is higher than their payoff for a cooperative one. However, if too many individu-
als choose non-cooperative options, a societal collapse occurs, and the entire group receives 
a lower payoff than if they had all cooperated [3, 39, 40]. This results in the first-order 
free rider problem, where individuals are motivated to maximize their reward by receiving 
the group benefit generated by cooperators, while not cooperating themselves [40]. Social 
dilemmas are ubiquitous within human society, with examples including choosing whether 
to obey fishing quotas [40], pay taxes [5], or reduce carbon emissions [39]. Therefore, for 
socially intelligent AI agents to successfully integrate into human society, they must learn 
to navigate these complex social dilemmas [2].

Social mechanisms are powerful tools for resolving these social dilemmas and guiding 
populations towards socially responsible choices. Examples of these mechanisms include 
punishment [15, 27, 28, 30, 35], partner selection [5, 41, 42], reputation [26, 43–45], and 
commitment [36, 46, 47]. As a result, numerous studies have proposed the integration of 
social mechanisms within artificial populations for the development of cooperative AI [1, 
5, 26–30, 43, 46, 48].

2.1 � Punishment

While social mechanisms such as reputation and partner selection have been shown to 
facilitate the emergence of cooperation within small groups, these mechanisms fail to scale 
to the size and complexity of the cooperation observed in human populations. Therefore, 
the use of punishment against norm violators has been proposed as the explanation for the 
emergence of large-scale non-kin cooperation observed within human societies [13, 15, 
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27, 31, 32, 49]. Individuals punish by reducing the payoff of another individual, potentially 
in response to the other individual’s behavior. An individual performs direct punishment 
when they punish their own interaction partner and third-party punishment when they pun-
ish an individual who was involved in an interaction with a different individual [13, 50]. 
Punishment of norm-violators resolves the first-order free rider problem by decreasing the 
potential payoff of defection and therefore, incentivizing cooperation [15, 31, 34].

While punishment can be beneficial to populations by encouraging the emergence of 
cooperation, its use incurs costs on both the punisher and the punished [13, 14], ultimately 
reducing the combined reward and overall productivity of the population [33, 51]. As the 
use of punishment is costly for the punisher and exposes them to the possibility of retalia-
tion, agents are incentivized to reap the benefits of the cooperative society created by pun-
ishers, while avoiding becoming punishers themselves [13, 33, 51]. This second-order free 
rider problem can result in the breakdown of cooperation within a population, if no one 
chooses to punish defectors [52].

2.2 � Metanorms and centralization

Many studies resolve the second-order free rider problem by applying metanorms [53] that 
punish those who failed to punish norm-violators [28, 30, 54]. A key limitation of this 
concept is that infinite regress can occur for example, punishing second-order free riders 
may result in third-order free riders. This infinite regress can be mitigated by individuals 
contributing to a centralized fine fund prior to a game, enabling the identification of second 
order free riders even if there are no first-order free riders [54]. This approach represents 
the first step towards centralized, institutional punishment that relies on a designated pun-
isher to deliver punishments on behalf of a group [13].

While centralized punishment systems such as a police force are common in modern 
human societies, for much of human history populations have relied upon decentralized 
punishment that is delivered voluntarily by individuals. Therefore, the use of decentral-
ized punishment may be more closely related to the emergence of cooperation within early 
humans [27]. Additionally, decentralized punishment schemes may be more effective in 
distributed systems such as peer-to-peer networks where agents may not be able to agree 
on a trusted central punisher or where interactions are high speed and high magnitude [48]. 
Decentralized punishment systems can be further decomposed into top-down and bottom-
up normative orders. A bottom-up normative order allows populations to develop their 
own norms and sanctioning schemes based on their environment [26, 55, 56]. This is often 
used to study norm emergence and coordination within populations. Whereas, a top-down 
normative order does not model the development of social norms within a population and 
instead models a specific form of law enforcement where a centralized institution creates 
laws but, enforcement is decentralized and voluntary [27, 28, 57]. This isolates the problem 
of determining the dynamics of how agents engage in punishment from the problem of 
coordinating social norms within a population.

Some societies resolve the second-order free rider problem by intrinsically or extrinsi-
cally rewarding the use of just punishment, for example by allowing the punishing agent 
to take resources from the punished agent [27]. Alternatively, the second-order free rider 
problem can also be overcome by combining the use of punishment with other social mech-
anisms such as partner selection and reputation [13, 15]. Agents that justly punish defectors 
can receive reputational gains, as just punishment is a costly signal of social responsibility 
[51]. Therefore, provided that the benefits of a good reputation for example, access to high 
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quality interaction partners via reputation-based partner selection, outweigh the costs of 
punishment, agents may be motivated to punish regardless [13].

2.3 � Reputation

An individual’s reputation is a record of their prior behaviors. This record can be formed 
from an agent’s own experiences (direct reciprocity) or through the experiences of other 
agents shared via gossip or other communication mechanisms (indirect reciprocity) [22–25, 
43]. The availability of a reputation mechanism allows agents to condition their behaviors 
towards interaction partners based on their partner’s past actions. For example, an agent 
may choose to only cooperate with agents that have a reputation of prosocial behaviors, 
to decrease the risk of being exploited by a defector [29]. Studies have shown that this 
conditional behavior can resolve the first-order free rider problem and extend cooperation 
beyond dyadic interactions [23] by providing a competitive advantage to cooperators and 
reducing the potential payoff of defection.

For a population’s reputation scheme to be trustworthy, an individual’s reputation must 
be built on costly signals of prosocial intent [16, 58, 59], such as choosing to cooperate 
despite the risk of exploitation or choosing to actively punish defectors [15, 21, 23, 24, 60]. 
Therefore, as building a trustworthy reputation is costly, cooperators can only gain a com-
petitive advantage over defectors if the benefits expected from a positive reputation exceed 
the costs involved in building it.

Direct reciprocity relies on repeated interactions between the same individuals, where 
each partner provides a benefit to the other [43]. These repeated interactions produce strong 
pairwise ties that encourage the development of cooperation via conditional behaviors [61]. 
However, many human interactions, such as donating money to charity, are asymmetric 
and short-lived [62]. These uni-directional edges also facilitate the emergence of coopera-
tion within networks [63] and are motivated by indirect reciprocity. The latter enables the 
emergence of cooperation even when interaction partners lack joint histories by aiding the 
spread of information between unrelated agents within a population [43, 62]. Additionally, 
indirect reciprocity enables information to spread between independent social structures, 
such that success in one domain can influence success in other domains [64]. However, 
indirect reciprocity has substantial cognitive demands as agents must be able to monitor 
the reputations of others, and so its use is rare in non-human organisms [62].

The simplest form of indirect reciprocity is first-order reciprocity, where an individual’s 
reputation is based solely on their previous actions. Image scoring is a type of first-order 
reciprocity that increases an agent’s reputation when they cooperate and decreases it when 
they defect [65]. However, image scoring is unstable as individuals have no incentive to 
defect against defectors to defend themselves from exploitation, because any form of defec-
tion would harm their own reputation [43]. In [43], the authors show that it is possible for 
cooperation to emerge using first-order reciprocity by applying a generous scoring strat-
egy. However, [43] only considers retaliatory defection, thereby ignoring the possibility 
of specialized punishment mechanisms being used alongside first-order reciprocity strate-
gies such as image scoring. Reputation is often closely linked with punishment, as agents 
that justly punish defectors often gain a positive reputation within their population. This is 
because just punishment is a costly signal of social responsibility [51, 58].

In [26], the authors further illustrate that reputation is most effective when it acts in 
tandem with other mechanisms. They study how populations of independent Q-learn-
ing agents learn to use reputations to coordinate their actions in the Iterated Prisoner’s 
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Dilemma. They find that even when environments contain a centralized reputation scheme, 
which stability predictions demonstrate to be effective for the emergence of cooperation, 
populations of reinforcement learning (RL) agents fail to achieve cooperation and converge 
to inefficient equilibria. Therefore, reputation alone is not a strong factor in the emergence 
of cooperation within populations. Instead, it acts in collaboration with other mechanisms 
such as punishment [13, 15, 20, 21, 60].

The combination of reputation and punishment can help resolve the second-order free 
rider problem. Agents with higher reputations enjoy superior access to resources, such 
as higher quality interaction partners, compared to those with lower reputations [22–25]. 
Therefore, provided that the benefits of a high reputation outweigh the costs involved in 
performing just punishment, agents may be motivated to punish due to the reputational 
gains they may receive [13]. The reputational gains from third-party and direct punishment 
may differ, as societies are more likely to reward third-party punishers more than direct 
punishers. This is because third-party punishment is generally seen as a costly act of virtue, 
while direct punishment is associated with more selfish motivations such as retribution [13, 
33, 66].

2.4 � Partner selection

Social networks are dynamic; individuals do not always interact with the same set of part-
ners, but instead cut or form ties with specific individuals [21, 23, 67]. Network transi-
tions, regardless of whether they are endogenous or exogenous in nature, can be beneficial 
for the emergence of cooperation [61]. Partner selection allows individuals to choose who 
they interact with based on the attributes of potential partners such as their reputation [5]. 
Reputation plays an important role in enabling cooperation to emerge via partner selection 
by providing individuals with information about the prior behaviors of potential partners 
[16–21, 23]. Individuals benefit from choosing high quality, cooperative partners that are 
unlikely to exploit them and so prefer to select interaction partners with cooperative reputa-
tions [17, 22, 31]. Assuming that reputations offer an honest signal of an agent’s prosocial 
intent, cooperators can gain a competitive advantage over defectors by exclusively interact-
ing with other cooperators. The resulting formation of cooperative clusters allows prosocial 
agents to reap the benefits of mutual cooperation and protect themselves from invasion by 
defectors [23, 29, 68].

The emergence of cooperative clusters can result in heterogeneous networks where 
cooperative individuals have far more interaction partners than others. While heterogene-
ous networks can improve the total wealth of a population, they can also lead to inequali-
ties within societies, such that the least connected individuals may be better off in a state of 
societal collapse [69]. However, this finding does not consider the possibility of individuals 
improving their reputations to become a more desirable interaction partner and therefore, 
more prosperous. Individuals trying to improve their reputation relative to other agents can 
result in competitive altruism, where individuals compete with each to gain the highest 
reputation and appear more attractive as an interaction partner [16, 18, 22]. This competi-
tion can result in the global emergence of cooperation within populations [31] and incen-
tivize the use of just punishment, therefore aiding the resolution of the second-order free 
rider problem.

The efficacy of the competitive altruism induced by partner selection in RL popula-
tions has been confirmed by multiple studies [5, 70]. In [5], the authors show that allow-
ing populations of DQN agents to select their partners based on their reputation in the 
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Iterated Prisoner’s Dilemma results in the emergence of cooperation, as agents learn to 
prefer partners with a history of prosocial behavior. However, Anastassacos et al. only use 
an agent’s most recent action to determine their public reputation. This could allow anti-
social agents to dishonestly signal prosocial intent by occasionally cooperating to gain a 
cooperative partner and then exploiting them, however this possibility is not explored. In 
[70], the authors further confirm that Q-learning agents are able to successfully leverage 
partner selection in a dynamic environment, illustrating the robustness of partner selection. 
However, this study does not explicitly study the problem of cooperation and does not con-
sider how reputational information can spread between agents through mechanisms such as 
gossip, instead relying on private reputations that are only updated with the agent’s direct 
experiences. Together, these results indicate that partner selection is a robust social mecha-
nism that is effective in enabling the emergence of cooperation in artificial populations.

2.5 � Unjust punishment

Unjust punishment, also known as anti-social punishment, occurs when punishment is 
unjustly applied to cooperators. The presence of unjust punishment can be detrimental to 
the evolution of cooperation as the punishment of cooperators reduces the incentives to 
cooperate and therefore, encourages pervasive defection [34, 52, 71, 72]. The competi-
tive environment created by combining partner selection, reputation and punishment can 
encourage the development of unjust punishment as agents may use punishment to dimin-
ish the standing of their peers and so become a more desirable interaction partner [34]. 
However, there is also evidence that unjust punishment can be restrained by commitment 
mechanisms [35, 47]. Reputation based partner selection can be viewed as an implicit com-
mitment mechanism, such that individuals interact as though they had a prior agreement to 
prevent mutual risk to their reputations [35, 36, 47]. As a result, an important factor deter-
mining the emergence of unjust punishment is the trade-off between the benefits of unjustly 
punishing competitors with the possibility of reputational losses [33, 34].

Many of the existing studies on punishment [13, 15, 28, 37] have assumed that agents 
are only able to punish defectors and so do not consider the impact of unjust punishment 
on social dynamics. For example, in [28], the authors study how punishment enables the 
evolution of division of labor in populations of RL agents. However, [28] relies on the 
assumption that a metanorm exists that forces agents to punish according to a centralized 
social sanctioning matrix, but do not consider how this metanorm should be modeled in 
the environment. This means the study fails to investigate dynamics associated with use of 
unjust punishment or second-order free riding.

One of the few studies that model unjust punishment is [27]. In [27], the authors 
investigate how the use of third-party punishment impacts populations of RL agents 
within a spatio-temporally extended environment of collecting berries. They show that 
the frequency of unjust punishment in a population decreases in environments with 
“silly rules" that do not confer any benefits to individuals or society. The presence of 
“silly rules" increases the legibility of the norms within a system [73], thus making it 
easier for agents to learn how to perform just punishment. However, [27] fails to eval-
uate the impact of third-party punishment on populations experiencing social dilem-
mas, as berries grow in abundance in the environment used in the study and there is 
no tension between individual-payoff maximizing and group-payoff maximizing actions. 
Moreover, Köster et  al. use a fixed population size of 12 agents and do not evaluate 
whether their findings can generalize to larger or smaller populations. These limitations 
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are somewhat resolved by [57], which investigates the impact of third-party punishment 
on populations of Q-learning agents playing the Prisoner’s Dilemma. They confirm that 
third-party punishment can successfully promote the emergence of cooperation in popu-
lations of up to 128 agents.

2.6 � Combinations of social mechanisms

While there is an abundance of literature examining social mechanisms in isolation, 
there are far fewer studies investigating the dynamics arising from combinations of 
them. However, the results from these studies show that the dynamics between social 
mechanisms generally benefit the emergence of cooperation. For example, populations 
that combine parity, sympathy and reciprocity achieve higher proportions of individual 
and social welfare compared to populations using a single mechanism [29]; moreover, 
populations that combine the use of direct punishment with commitment achieve higher 
proportions of cooperation than if commitment was used alone [35, 47]. Furthermore, 
the combination of reputation and commitment enables the emergence of cooperation, 
even in environments without repeated interactions, by targeting cooperation to those 
who are true to their word [36]. These results reflect the continued co-existence of social 
mechanisms in the natural world and illustrate the importance of considering interac-
tions between social mechanisms when designing cooperative AI systems.

2.7 � Limitations of existing literature

Punishment is a powerful method for shaping the behaviors of a population [15]. Direct 
punishment is a particularly interesting form of punishment, as unlike third-party pun-
ishment, it has also been observed in non-human populations [13, 32]. This indicates 
that direct punishment may be a simpler but, still effective mechanism for encouraging 
the development of cooperation within populations. However, there is limited research 
comparing the dynamics emerging from direct and third-party punishment in MARL 
populations. Moreover, while there has been extensive research examining direct pun-
ishment [51, 66] and third-party punishment separately [27, 32, 33, 55, 57, 74], research 
into their combined use has been far more limited.

Additionally, both forms of punishment have several limitations that can render them 
ineffectual. These include the development of unjust punishment [34, 52, 71, 72] or sec-
ond-order free riding [13, 33, 51]. Moreover, the high cost of punishment can make its 
use unprofitable for populations, regardless of the proportion of cooperation it produces. 
In the absence of centralized institutions, these issues could potentially be resolved by 
combining the use of punishment with reputation and partner selection. Despite the rich 
connections that exist between punishment and other social mechanisms such as partner 
selection and reputation, research into the dynamics emerging from their combined use 
has been limited. To the best of our knowledge, there is no existing literature examining 
the learning dynamics emerging from the combination of direct and third-party punish-
ment, partner selection and reputation in populations of MARL agents. Moreover, many 
of the existing studies of punishment fail to model the existence of unjust punishment or 
second order free-riding in their environments [13, 15, 28, 37].
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3 � Approach

We aim to provide a comprehensive and systematic analysis of the learning dynamics 
and behaviors associated with the use of direct and third-party punishment in societies 
of artificial agents and how these dynamics change when combined with the related 
social mechanisms of partner selection and reputation. To achieve this, we use a series 
of simulations where populations play the Iterated Prisoner’s Dilemma in the context 
of several different combinations of social mechanisms. This is done by splitting each 
simulation into stages, where each of the social mechanisms being studied are asso-
ciated with a specific interval in the simulation. Each stage can be added or removed 
to explore different combinations of social mechanisms. This allows for the impact of 
direct or third-party punishment on the emergence of cooperation within populations 
to be isolated. Moreover, this enables the combined impact of all the mechanisms to be 
investigated.

3.1 � Iterated Prisoner’s Dilemma

The Iterated Prisoner’s Dilemma is used to model the cooperative social dilemma that 
each population must overcome through the use of social mechanisms. This dilemma 
has been extensively used to study the emergence of cooperation within populations [4, 
17, 51, 75]. The Iterated Prisoner’s Dilemma involves a pair of agents repeatedly play-
ing the Prisoner’s Dilemma, characterized by the payoff matrix in Table 1.

3.2 � Simulation

A simulation, illustrated in Fig. 1, is constructed to model the impact of social mecha-
nisms on populations of independent and identically constructed learning agents expe-
riencing the Iterated Prisoner’s Dilemma. Each episode in the simulation consists of up 
to three distinct stages. The first stage in an episode involves agents being paired with 
their interaction partners, either through partner selection or random matching. Then, 
for each round every pair of agents will play the Prisoner’s Dilemma with their partner 
and then immediately choose whether or not to punish another agent, which may or may 
not be their partner, based on the decisions made in the previous game. Each simulation 
consists of 2000 episodes, with ten rounds per episode.

Table 1   Payoff matrix for the Iterated Prisoner’s Dilemma
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3.2.1 � Reputation

Each agent in the population is assigned a scalar integer reputation that encodes the soci-
etal value of their actions. This reputational information is updated with their playing and 
punishing actions throughout each agent’s lifetime. This model of reputation is a more 
costly and therefore, trustworthy signal of prosocial behavior compared to previous studies 
of MARL populations that only used an agent’s previous playing action to determine their 
reputation [5]. Reputational information can be included in the partner selection, dilemma 
game playing or punishment states to inform an agent’s decision making process within 
the corresponding stages of the simulation. This mimics how reputational information is 
used in conjunction with other social mechanisms within the natural world. Every agent’s 
reputation is publicly available to all agents in the population, using the assumption that 
this information is shared using a transfer mechanism such as gossip and that this transfer 
mechanism is complete and honest. This simplifying assumption has been used by much of 
the existing literature, as it isolates the impact of reputation on the emergence of coopera-
tion from the complexity of agents learning to assign reputations to others [26].

While agents can use both reputations and their experience of past interactions to condi-
tion their behaviors towards other agents, experiments detailed in Appendix D show that 
this is not sufficient to promote the emergence of cooperation within MARL populations. 

Fig. 1   Each episode in a simulation consists of up to three distinct stages. In the first stage, depending on 
whether partner selection is being studied in the current simulation, agents either select their next interac-
tion partner using their partner selection DQN model or their partner is selected randomly out of all other 
agents in the population. Agents then play the Prisoner’s Dilemma with their partner in the second stage 
before, choosing whether or not to carry out punishment in the third stage. The third stage can consist of 
agents performing direct punishment, third-party punishment or both direct and third-party punishment 
depending on the combination of social mechanisms being studied in the current simulation. The second 
and third stages repeat consecutively for each round in the episode, while the first stage occurs only once at 
the start of an episode
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This provides further evidence to the idea that reputational information is not by itself a 
strong factor in the emergence of cooperation, but rather acts in tandem with other mecha-
nisms. As a result, this study will consider reputation as an auxiliary social mechanism that 
facilitates the use of others within populations.

3.2.2 � Stage 1: Partner selection

At the start of every episode, every agent is paired with another agent in the population 
to be their interaction partner for the next ten rounds. Agents cannot be paired with them-
selves and all agents can both select and be selected in an episode. There are no restrictions 
on how many times an agent can be paired with other agents in the same episode.

If the combination of social mechanisms being investigated by a simulation includes 
partner selection, then at the start of every episode, every agent, regardless of their current 
reputation, is able to select their interaction partner for the episode using the reputations 
of the other agents in the population. The selected agent cannot refuse to play with the 
agent that selected them. Therefore, every agent will play at least ten rounds with their 
selected interaction partner. However, some agents will play more if they are selected by 
other agents in the population. It is up to each agent to learn how to use the reputational 
information available to select a valuable interaction partner. Therefore, if enough agents 
learn a coordinated view on the reputations they prefer their interaction partners to have, 
those socially desirable agents will gain a competitive advantage as they will be selected 
and therefore, play more often. This creates normative pressure towards the behaviors that 
foster the reputation deemed desirable by the population and models the reputation-based 
partner selection observed within the natural world [16, 21, 22]. If partner selection is 
not included in the combination of social mechanisms being investigated by a simulation, 
every agent is randomly paired with another agent in the population.

3.2.3 � Stage 2: Prisoner’s Dilemma

Each round of the episode begins with each of the paired agents playing an iteration of 
the Prisoner’s Dilemma. This stage is an essential part of the simulation, as it models the 
main social dilemma that the population must overcome. As the choice to cooperate in a 
social dilemma is a costly signal of social responsibility [5, 23, 25], cooperating increases 
the value of an agent’s reputation by one while defection decreases it by one. The rewards 
received by each agent playing the Prisoner’s Dilemma are specified by the payoff matrix 
in Table 1.

3.2.4 � Stage 3: Punishment

After each pair of agents has played an iteration of the Prisoner’s Dilemma, the next step 
in each round is the application of punishment to agents within the population. This pun-
ishment stage involves each agent choosing whether or not to punish a target agent based 
on the actions that the target agent took within the previous Prisoner’s Dilemma game. 
Depending on the combination of social mechanisms being studied in the simulation, the 
punishment stage can consist of either third-party punishment, direct punishment or both 
third-party and direct punishment.

Third-party punishment involves an agent that is unrelated to an interaction choosing 
whether to punish an agent who is directly involved in the interaction [13, 32]. Therefore, 
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for each interaction between a pair of agents A and B in a simulation that contains third-
party punishment, two agents P and K that are not involved with the interaction between 
A and B are randomly selected to act as potential third-party punishers. Agent P decides 
whether to punish agent A and agent K decides whether to punish agent B. Instead, direct 
punishment involves the individuals involved in the interaction deciding whether to punish 
each other after interacting [50]. Therefore, given an interaction between a pair of agents A 
and B in a simulation that contains direct punishment, agent A decides whether to punish 
agent B and vice versa.

In the natural world, the decision to apply punishment is heavily related to the reputa-
tional benefits punishers receive from delivering punishments to others [13, 15]. However, 
while just punishment of defectors is looked upon favorably by society [13, 15, 33], unjust 
punishment of cooperators is perceived unfavorably [34, 72]. To mirror this behavior, the 
simulation rewards agents who justly punish a defector by increasing their reputation by 
two and decreases the reputation of agents by three when they unjustly punish a cooperator.

As performing punishment is costly for the punisher in the natural world [13, 14], 
the decision to perform punishment in the simulation reduces the reward of the punish-
ing agent by ten and the reduces the reward of the punished agent by three. Two different 
reward schemes for just punishment were evaluated. In the first reward scheme, referred to 
as Scheme 1, if the punisher performs just punishment of a defector, they gain seven units 
of reward resulting in the punisher suffering a net loss of 3 units of reward. This reward 
scheme relies on the presence of partner selection and reputation to resolve the second 
order free rider problem. In the second reward scheme, referred to as Scheme 2, if the pun-
isher performs just punishment of a defector, they gain twelve units of reward. Therefore, 
just punishment results in the punisher receiving a net profit of two units of reward. This 
reward scheme was inspired by [27] and models either intrinsic or extrinsic rewards for 
just punishment. These rewards create an incentive for agents to learn to perform just pun-
ishment and reflect a common judicial system throughout human history where a central-
ized institution labels antisocial behavior but enforcement is decentralized and rewarded by 
being able to take the transgressor’s property [27].

In each of the experiments, the population consisted of five agents. As outlined in 
Appendix C, additional experiments were carried out to determine whether cooperation 
behaviors changed with different population sizes and these experiments showed that 
increasing the number of agents did not have a strong effect on the general behaviors 
observed and the slight differences between population sizes are reported upon and ana-
lyzed in the Appendix.

3.3 � Learning framework

In order to create artificial populations of agents that are capable of simulating responses 
to mixed-motive cooperative dilemmas, each agent is modeled as an independent actor [5, 
57, 76, 77]. This allows agents to have goals that are not fully aligned with others in the 
population and allows agents to avoid sharing all of their information e.g. reward signals 
or observations with others. This model may also contribute to current work modeling 
human-human and AI-human interactions, as humans are typically unable to share their 
reward signals or observations with other agents [55].

Populations consist of N identically constructed learning agents. Each learning agent 
consists of up to three independent Deep Q-Network (DQN) models, each specialized for 
a different agent ability. These agent abilities are the following: choosing an interaction 
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partner, playing the Prisoner’s Dilemma and choosing whether to punish. This model 
extends the approach proposed by [5] to include an additional DQN model specialized for 
punishment. This multi-model design allows for greater flexibility compared to a single 
model design, as different hyper-parameters can be used for each DQN model to optimize 
the performance of each agent ability. This design also reduces the complexity of the neu-
ral networks needed for each DQN model. Each learning agent in the population will only 
contain a DQN model for a specific ability if it is required by the social mechanism combi-
nation being investigated in the current experiment.

3.3.1 � Deep Q‑network learning

RL algorithms such as Deep Q-Network (DQN) allow agents to continuously learn from 
their experiences and organically discover strategies [26]. This results in a highly dynamic 
environment where independent agents are learning simultaneously and where every agent 
behavior needs to be learned from stimuli, allowing normative legibility to be modeled via 
how easy it is for agents to learn a behavior. The RL learning dynamics also result in tem-
poral dependencies between the learned behaviors: for example, agents might need to learn 
to punish defectors prior to learning to cooperate [27]. Therefore, the use of DQN, as a RL 
algorithm, allows the learning dynamics that emerge from populations using social dilem-
mas to be made transparent. DQN was selected as the most parsimonious approach, which 
is capable of dealing with large state spaces and can be scaled up to potentially very large 
populations at the same time.

Agents are independently trained using Q-learning [78] to learn an estimate of the opti-
mal action-value function Q

�
(s, a) ∶ S ×A → ℝ and therefore, the optimal policy � . With 

DQN, Q
�
(s, a) is parameterized by a neural network. After each interaction, each agent 

updates Q
�
(s, a) using Eq. 1, where s is the state they observed, a is the action they took, r 

is the reward received and s′ is the next state. To determine which action should be taken in 
each state, each agent applies an �-greedy policy.

3.3.2 � Model

To formalize, the simulation is a N player Markov Decision Process. When partner selec-
tion is used in a population, agents observe a state Sselect ∈ ℝ

N consisting of an array con-
taining all agent reputations within the population. The partner selection DQN model then 
outputs the Q-values of each potential interaction partner, with the partner that has the 
maximum Q-value being chosen as the agent’s interaction partner.

During the Prisoner’s Dilemma stage, the input states Splay observed by populations 
using direct punishment and populations using third-party punishment or combined direct 
and third party punishment differ. Experiments, detailed in Appendix B, show that includ-
ing reputational information in Splay is beneficial to the emergence of cooperation when a 
population adopts third-party punishment, while this is not the case for direct punishment. 
Therefore, to ensure that no combination was unfairly advantaged, the optimal input state 
Splay was used for each social mechanism combination. Therefore, populations using third-
party punishment or both third-party and direct punishment observe a state Splay ∈ ℝ

4 that 
consists of both their own and their partner’s reputation and previous playing action. While 

(1)Q(s, a) ← Q(s, a) + �

[

r + � max
a�∈A

Q
(

s�, a�
)

− Q(s, a)
]



	 Autonomous Agents and Multi-Agent Systems           (2025) 39:19    19   Page 14 of 37

populations using direct punishment observe a state Splay ∈ ℝ
2 that consists of both their 

own and their partner’s previous playing action. The dilemma game playing DQN model 
then outputs the Q-values associated with cooperating (0) and defecting (1), with the action 
that has the maximum Q-value being selected.

During the punishment stage, agents observe a state Spunish ∈ ℝ
2 consisting of the previ-

ous playing actions of both the agents involved in the interaction being judged. The punish-
ment DQN model then outputs the Q-values associated with the agent not punishing (0) 
or punishing (1), with the action that has the maximum Q-value being selected. A series 
of experiments, outlined in Appendix B, found that adding reputational information to the 
punishment state negatively impacted the emergence of cooperation within populations for 
both forms of punishment, and so reputational information was not included in the punish-
ment state. In the case of populations using both third-party and direct punishment, the 
same punishment DQN model is used for both types.

Figure  2 illustrates the network architectures of each of the DQN models associated 
with an agent ability. Each DQN model is parameterized using a single hidden layer, with 
128 neurons and a ReLU activation function. The use of 128 neurons resulted in more con-
sistent results compared to smaller networks over multiple runs.

The hyper-parameters for each DQN model are optimized for their specific task and 
they are shared across all agents. A linearly decaying �-greedy policy (where a maximum � 
value decays to a fixed minimum � value) was used alongside the following hyper-param-
eters: the partner selection, dilemma game playing and punishment models all shared a 
maximum � of 0.8889, a discount rate of 0.9, a batch size of 100 and updated the weights 
of their target network to match their online network every 200 steps. The partner selection 
model used a minimum � of 0.0001 and a learning rate of 0.01, while the playing model 
used a minimum � of 0.01 and a learning rate of 0.1. Instead, the punishment model used 
a minimum � of 0.2 and a learning rate of 0.001. A description of the experiments used to 
select these hyper-parameters is reported in the Appendix.

4 � Results

This section presents a systematic analysis on the impact of direct punishment on popu-
lations of MARL agents, illustrating that direct punishment has a positive impact on the 
emergence of cooperation. Additionally, populations that combine the use of direct punish-
ment with reputation and partner selection experience further gains in societal cooperation. 
The results show that populations using third-party punishment consistently achieve higher 
levels of cooperation at convergence compared to populations using direct punishment. 
At the same time, populations that use both third-party and direct punishment achieve the 
highest level of societal cooperation in the least number of episodes. Additionally, direct 
punishment achieves the highest level of societal reward at convergence, indicating that it 
is most effective at maximizing global welfare through cooperation.

4.1 � Description of the experiments

Each experiment involved 2000 episodes, with each episode consisting of ten rounds. 
Experimental trials showed that 2000 episodes was sufficient for convergence. The 
experiments were each repeated twenty times. The experiments evaluated the impact 
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of the following combinations of social mechanisms on the emergence of cooperation 
within MARL populations:

•	 TPP-S third-party punishment with partner selection.
•	 TPP third-party punishment.
•	 DP-S direct punishment with partner selection.
•	 DP direct punishment.
•	 TPPDP-S third-party punishment with direct punishment and partner selection.
•	 TPPDP third-party punishment with direct punishment.

Fig. 2   Each agent consists of up to three independent DQN models, each specialized for a different agent 
ability
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4.2 � Evaluation metrics

Several metrics were designed to comprehensively evaluate the learning dynamics and 
behaviors displayed within simulations of cooperative social dilemmas. The rolling mean 
of each metric and the associated 95% confidence interval across twenty repeats was cal-
culated, with a rolling window of 100 episodes. In particular, we considered the following 
metrics:

Cooperation per episode Percentage of cooperative actions taken by the entire popula-
tion in the dilemma game, in each episode.

Cooperator selections per episode Percentage of agents selected as partners per episode 
who performed cooperative actions in the dilemma game for the majority of the previous 
episode.

Punishment per episode Percentage of punishing actions taken by the entire population 
in each episode.

Percentage of selected punishers per episode  Percentage of agents selected as partners 
per episode who punished in the previous episode.

Ratio of just punishment to unjust punishment per episode  Percentage of punishing 
actions taken by the entire population that were applied to defectors in each episode.

Just punisher selections per episode  Percentage of agents selected as partners per 
episode who performed just punishment of defectors for the majority of the punishment 
opportunities they had in the previous episode.

Societal reward per episode Total reward obtained by the entire population per episode.
Societal reputation per episode Total reputation obtained by the entire population per 

episode, where reputation is cumulative over episodes.

4.3 � Comparing just punishment reward schemes

Figure 3a shows that populations relying on Scheme 2, where additional intrinsic or extrin-
sic rewards are associated with just punishment, successfully converge to cooperation in all 
cases. However, when populations use Scheme 1 to reward just punishment, all populations 

Fig. 3   Populations using direct punishment or direct punishment with partner selection learn to cooperate, 
but converge to a lower proportion of cooperation compared to populations using third-party punishment 
or both direct and third-party punishment. Despite this, populations using direct punishment achieve sig-
nificantly higher levels of societal reward at convergence. This indicates that populations combining direct 
punishment with partner selection are most effective at maximizing global welfare through cooperation



Autonomous Agents and Multi-Agent Systems           (2025) 39:19 	 Page 17 of 37     19 

fail to converge to cooperation, as they fail to learn to apply punishment. This indicates that 
the presence of partner selection and reputation is not sufficient to resolve the second-order 
free rider problem in MARL populations. The figures illustrating the social dynamics that 
emerge from the use of Scheme 1 can be found in Section E of the Appendix. All further 
results rely on Scheme 2, with the assumption that there are additional intrinsic or extrinsic 
rewards associated with just punishment within the environment.

4.4 � Measuring the success of direct punishment

The success of multi-agent populations can be measured by both their proportion of proso-
cial behavior and the population’s combined reward. Figure 3a shows that direct punish-
ment is effective at encouraging the emergence of cooperation within populations. How-
ever, populations using direct punishment or direct punishment with partner selection 
achieved slightly lower proportions of cooperation compared to populations using third-
party punishment. This supports previous findings that direct punishment is less effective 
at encouraging the development of cooperative behavior in populations compared to third-
party punishment [13, 15, 31, 32]. Figure 3a also shows that populations combining direct 
and third-party punishment not only achieve the highest proportions of cooperation but 
also converge the fastest. This observation supports the continued existence of both direct 
and third-party punishment within human societies.

Although direct punishment bears the same costs as the more effective third-party form 
of punishment, Fig. 3b shows that populations using direct punishment with partner selec-
tion achieve the highest levels of societal reward at convergence. These populations are 
followed closely by those using direct punishment alone. This suggests that societies using 
direct punishment are more efficient than their counterparts that wield third-party punish-
ment. Therefore, considering that the success of a population is determined by both the 
proportion of cooperation achieved and overall societal wealth, direct punishment, particu-
larly when combined with partner selection, emerges as the most effective social mecha-
nism for overall global welfare and cooperative behavior.

4.5 � Dynamics of just and unjust punishment

To understand the reasons behind the comparative success of populations using direct pun-
ishment or direct punishment with partner selection compared to other social mechanisms, 
we must investigate the dynamics of just and unjust punishment associated with each social 
mechanism combination.

4.5.1 � Direct punishment

Figure  3a shows that prior to the 350th episode, high levels of defection were relatively 
stable in populations using direct punishment or direct punishment with partner selection. 
During the same period, the use of punishment in populations using direct punishment or 
direct punishment with partner selection was the highest of all social mechanism combina-
tions. Additionally, prior to the 185th episode, the populations’ have the lowest proportion 
of just punishment. Therefore, populations using direct punishment or direct punishment 
with partner selection experience an early period of pervasive unjust punishment. The 
presence of unjust punishment generates normative pressure that dissuades agents from 
learning to cooperate. Figures 3b and 4a show that the high levels of defection and unjust 
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punishment during this period lead to a decline in societal rewards and reputation. The lack 
of rewards associated with unjust punishment also result in the proportion of punishers 
within the population remaining stagnant until the 160th episode.

The use of just punishment begins to rise after the 140th episode, as agents rapidly begin 
to learn that performing just punishment in a population with high levels of defection is 
highly profitable. Therefore, populations using direct punishment or direct punishment 
with partner selection learn to always perform just punishment over unjust punishment 
when they choose to punish. This rapid learning may emerge from the high levels of defec-
tion experienced by populations employing direct punishment, as this ensures that many 
opportunities for just punishment are available. Figure 3a shows that this results in a rapid 
emergence of cooperation within populations using direct punishment or direct punishment 
with partner selection at the 350th episode. Figure 3b shows that this leads to a substantial 
increase in societal reward. However, as the number of defectors within the populations 
decrease, opportunities for just punishment also decrease. Therefore, as the populations 
have been trained to avoid unjust punishment, Fig. 5 shows that the overall proportion of 
punishment decreases to the lowest levels of all the social mechanism combinations by the 
475th episode. This reduces the normative pressure for defecting agents to learn to coop-
erate, resulting in populations using direct punishment or direct punishment with partner 
selection plateauing to a lower proportion of cooperation compared to other social mecha-
nism combinations.

Figure 5 also shows that the punishment per episode metric is almost inversely propor-
tional to cooperation per episode for every social mechanism combination. This is because 
the lower levels of defection reduce the availability of profitable just punishing opportuni-
ties. As unjust punishment is extremely costly, agents learn to reduce their application of 
punishment as rates of cooperation increase within a population.

The increased levels of cooperation and just punishment at convergence lead to increases 
in societal reputation however, Fig. 4a shows that populations using direct punishment or 
direct punishment with partner selection still lag behind the other social mechanisms at 
convergence as a result of the comparatively lower levels of cooperation. The stabilization 
of cooperation levels also leads to a plateauing of societal reward; however, as the overall 

Fig. 4   Populations using direct punishment experience an early period of pervasive unjust punishment prior 
to the 140th episode, resulting in a decrease in societal reputation. As populations begin to learn to perform 
just punishment and cooperate, the societal reputation of populations using direct punishment increases but, 
to a lesser extent compared to populations using third-party punishment or combined third-party and direct 
punishment
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levels of punishment are the lowest of all the social mechanism combinations, the popula-
tions achieve a substantially higher level of societal reward at convergence than the other 
social mechanisms. 

4.5.2 � Third‑party punishment

Populations utilizing third-party punishment or a combination of third-party punishment 
and partner selection experience different dynamics. Figure 4b shows that prior to the 210th 
episode, populations using third-party punishment or third-party punishment with partner 
selection hold the highest ratio of just punishment to unjust punishment. This results in 
normative pressure to cooperate being applied to agents at an early stage within the simu-
lation, enabling rapid convergence to a high level of cooperation. Consequently, Fig.  3b 
shows that populations using third-party punishment or third-party punishment with part-
ner selection achieve the highest societal reward of all the social mechanisms until the 
412th episode.

However, Fig. 4b shows that populations using third-party punishment (or third-party 
punishment with partner selection) fail to eradicate unjust punishment. The ratio of just 
punishment to unjust punishment decreases as cooperation increases. The use of punish-
ment also decreases as opportunities for profitable just punishment decrease. However, as 
unjust punishment of cooperators still occurs at convergence, the overall levels of punish-
ment within the population remain higher than in populations using direct punishment, 
despite higher cooperation levels. This suggests that populations using third-party punish-
ment are slower to learn how to punish justly and this may be because the rapid rise in 
cooperation within the populations means that agents fail to observe a sufficient number of 
examples of positively rewarding just punishment on defectors for the entire population to 
learn the behavior.

Fig. 5   Punishment per episode. Populations using direct punishment initially have the highest levels of pun-
ishment, despite also having the lowest levels of just punishment. As agents begin to learn how to punish 
justly, the proportion of punishment in the population increases as the act of punishing becomes reward-
ing for agents. As the levels of cooperation increase within a population, the use of punishment decreases 
regardless of the social mechanisms used as there are fewer opportunities for profitable just punishment. 
Populations using direct punishment have the lowest levels of punishment at convergence, resulting in 
reduced normative pressure to cooperate and therefore, lower levels of cooperation overall
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This limits further increases in societal reward due to the high costs involved with 
punishment, particularly its unjust form. Nevertheless, populations using third-party 
punishment or third-party punishment with partner selection achieve the highest soci-
etal reputation at convergence. This is as a result of the populations attaining higher 
levels of cooperation at convergence compared to populations using direct punishment 
or direct punishment with partner selection, in addition to having lower levels of unjust 
punishment than populations that combine third-party and direct punishment as the lat-
ter has double the number of punishment opportunities.

4.5.3 � Combining third‑party and direct punishment

Populations applying both third-party and direct punishment experience similar dynam-
ics of just and unjust punishment to populations using third-party punishment. Popula-
tions apply just punishment within the first 100 episodes, resulting in the most rapid 
convergence to the highest level of cooperation of all the social mechanism combina-
tions studied. Similarly to third-party punishment, populations combining third-party 
and direct punishment fail to eradicate unjust punishment, resulting in higher levels of 
punishment at convergence compared to populations using direct punishment.

Figure  3b shows that populations that combine direct and third-party punishment 
always attain the lowest amount of societal reward. This is because these populations 
have two opportunities for punishment with every interaction, doubling the costs asso-
ciated with unjust punishment. Similarly, Fig. 4a shows that despite the high levels of 
cooperation enabling populations combining direct and third-party punishment to have 
the highest societal reputation prior to the 690th episode, after this point the levels of 
unjust punishment from the two punishment opportunities lead the populations to lag 
behind third-party punishment and third-party punishment with partner selection.

4.6 � Dynamics of combining direct and third‑party punishment

Figure 3a shows that populations using both direct and third-party punishment are the 
quickest to converge and achieve the highest levels of cooperation. This suggests that 
direct and third-party punishment work better in tandem and their involvement in the 
evolution of cooperation may be inter-related. This may be as a result of the increased 
opportunities for punishment increasing the legibility of the social norms [73] and, 
therefore, enabling faster learning of cooperative behaviors. The same levels of over-
all punishment and just punishment were observed between the third-party and direct 
punishment mechanisms. This is as a result of both mechanisms being controlled by a 
single punishment model and future research may investigate the impact of splitting the 
model into further specialized direct and third-party punishment models. Figure 7b fur-
ther shows that when both third-party and direct punishment are possible within a popu-
lation, agents are more likely to select just third-party punishers compared to just direct 
ones. This indicates that third-party punishers are more valued than direct ones and so 
more influential within the population, providing a justification for the similar dynam-
ics observed between populations using third-party punishment alone and populations 
using both third-party and direct punishment.
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4.7 � Understanding the impact of partner selection

Figure 6 shows that all populations, regardless of social mechanisms used, learn to select 
cooperators in nearly all interactions. The populations achieve the same proportion of 
cooperator selections at convergence, despite differing levels of cooperation at conver-
gence. This indicates that all populations learn to value cooperators, enabling them to gain 
a competitive advantage by being selected as interaction partners more frequently. The 
early stages of Fig. 6 are mirrored by levels of cooperation in Fig. 3a as higher levels of 
cooperation increase the likelihood of selecting a cooperative agent while populations are 
still in the process of learning to select cooperators. Furthermore, this result also shows 
that populations are able to discern how to use reputational information to influence their 
behaviors. 

The behavior of punisher selections in Fig. 7a closely follow the levels of punishment 
in Fig.  5. This indicates that populations, regardless of the social mechanisms used, do 
not learn to favor punishers over non-punishers. Whereas, the behavior of just punisher 
selections in Fig. 7b differ. Figure 7b shows that populations using direct punishment with 
partner selection initially have the lowest level of just partner selections. This reflects the 
high levels of unjust punishment within the populations. The proportion of just punish-
ment selections increase from the 145th episode, aligning with the rapid rise in the use of 
just punishment within the population. The percentage of just punisher selections reaches a 
plateau at the 265th episode, which matches the point where the population learns to always 
perform just punishment in Fig. 4b.

Following the plateau, the proportion of just punisher selections decreases as the pro-
portion of punishment occurring in the population decreases. However, populations 
combining direct punishment with partner selection converge to the highest level of just 
punisher selections of all the social mechanism combinations. This increases the value of 
performing just punishment by enabling just punishers to participate in more interactions, 
contributing to the population rapidly learning to perform just punishment in nearly all 
cases and increasing the normative pressure to cooperate. By preferring cooperators and 
just punishers, populations that combine direct punishment and partner selection experi-
ence higher levels of cooperation at convergence compared to populations that use direct 
punishment alone. Even prior to the 350th episode and the emergence of just punishment, 

Fig. 6   Cooperator selections per 
episode. All populations, regard-
less of the social mechanisms 
used, learn to select coopera-
tors in nearly all interactions at 
convergence
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populations that combined direct punishment with partner selection achieved a higher level 
of cooperation compared to populations that used direct punishment alone, potentially due 
to the additional normative pressure of cooperative selections.

Both populations using third-party punishment with partner selection, and popula-
tions that combine third-party punishment with direct punishment and partner selection, 
start with a high level of just punisher selections within their population. This drives the 
increased levels of just punishment in populations with partner selection, as visible in 
Fig. 4b. However, as the levels of just punishment decrease within the population, the pro-
portion of just punisher selections also decreases. Figure  3a shows that the inclusion of 
partner selection in populations using third-party punishment, or a combination of third-
party and direct punishment, results in slightly slower convergence to cooperation. This 
slower convergence suggests that the combination of third-party punishment and partner 
selection is more complex for agents to learn, leading to a greater number of mistakes dur-
ing the learning process.

Additionally, Fig.  3a shows that populations using direct punishment without partner 
selection experience minor fluctuations in cooperation per episode after the 750th episode. 
These are accompanied by reversed fluctuations in Fig. 5. This suggests that populations 
applying direct punishment without partner selection experience temporary increases in 
cooperation, followed by increases in free-riding. This results in cycles of defection and 
punishment. As these fluctuations are not present in populations that combine direct pun-
ishment with partner selection, it can be inferred that the latter may have a smoothing effect 
on the cooperation achieved by populations utilizing direct punishment.

5 � Conclusion and outlook

This study demonstrates that while direct punishment is effective at promoting the emer-
gence of cooperation within populations, those using third-party punishment achieve 
higher levels of cooperation upon convergence. This provides further evidence that 

Fig. 7   Fig.  7a shows that populations, regardless of the social mechanism used, do not learn to favor 
generic punishers over non-punishers. However, Fig.  7b shows that populations using direct punishment 
do learn to favor just punishers. Populations using direct punishment initially have the lowest levels of just 
punisher selections, before it rapidly increases at the 145th episode and converges to the highest level of just 
punishment. This increase in just punisher selections contributes to the rapid learning of just punishment 
within populations using direct punishment
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third-party punishment is the primary driving force for the evolution of large-scale coop-
eration within non-kin human societies [13, 15, 27, 31].

The comparatively poorer performance of populations using direct punishment may be 
due to their higher levels of unjust punishment at the start of the simulation. This incen-
tivized pervasive defection that could not be fully resolved before the population started 
reducing punishment as cooperation increased and the benefits of performing punishment 
reduced. However, populations that use direct punishment achieve the highest levels of 
societal reward, indicating that the use of direct punishment results in the most efficient 
societies. This efficiency may contribute to why direct punishment is preferred in simpler 
and more resource-constrained non-human populations. This work also shows that popula-
tions that combine the use of third-party and direct punishment achieve the highest lev-
els of cooperation overall. This could be a result of the increased number of punishment 
opportunities, which enhances the legibility of social norms [73], thereby enabling faster 
learning of cooperative behaviors. This finding reflects the continued presence of both 
direct and third-party punishment within societies. While the combination of direct pun-
ishment with partner selection and reputation led to higher levels of cooperation, popula-
tions that used third-party punishment or a combination of third-party and direct punish-
ment were slower to converge when partner selection was introduced. This suggests that 
the complexity involved in learning how to use combinations of social mechanisms varies 
between direct and third-party punishment.

It is possible to identify a series of limitations of this work. Firstly, we assume that all 
agents have access to complete and accurate global reputations, and that all events contrib-
uting to an agent’s reputation maintain the same level of importance throughout its life-
time. Furthermore, the environment provides a top-down normative order, defining what 
constitutes just and unjust punishment. Although this simplified model is suitable for the 
objectives of this work, since it allows for the isolation and analysis of behaviors and learn-
ing dynamics emerging from these norms, a more realistic model would involve the agents 
developing their own social norms. Future research could also consider the emergence of 
normative orders that allow agents to develop and enforce their own social norms. Addi-
tionally, it could investigate how agents adapt to changes in payoffs and norms during the 
learning process.

This work provides a systematic analysis of several fundamental social mechanisms 
within MARL systems that can act as a guide for researchers and practitioners when select-
ing or combining these design dimensions within cooperative AI systems. Therefore, this 
work not only introduces a new perspective on the role of direct punishment within the 
evolution of cooperation, but also represents a strong foundation for the creation of new 
punishment-based techniques as a basis for the design of cooperative AI systems.

Appendix A: Hyperparameter tuning

Each experiment involved 2000 episodes, with each episode consisting of ten rounds. The 
experiments were each repeated twenty times. Hyperparameter tuning involved a random 
search of 100 hyper-parameter combinations to find the hyper-parameters that maximized 
the mean joint reward for all agents over all the repeats. The following hyper-parameter 
ranges were investigated during the hyper-parameter tuning process (Table 2):

•	 Maximum Buffer Size ∈ [2x ∣ x ∈ [11, 21)]
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•	 Batch Size ∈ [2x ∣ x ∈ [10, 19)]

•	 Target Update ∈ {2x ∣ x ∈ [500, 5001), x%500 = 0}

•	 Minimum � = np.linspace(1e-4, 1, num=10)
•	 Maximum � = np.linspace(1e-4, 1, num=10)
•	 � Decay ∈ np.linspace(1e-4, 0.9, num=10)
•	 Discount Rate ( � ) ∈ [0.8, 0.9, 0.99]
•	 Learning Rate ∈ [0.001, 0.01, 0.1]

Appendix B: Determining optimal reputation and state information 
composition

Several experiments were carried out to determine what information about an agent’s past 
behaviors should contribute to the calculation of their reputation and how this reputational 
information should be used, in order to maximize the emergence of cooperation within a 
population. The results of these experiments provide insights on how providing popula-
tions with several varieties of long-term playing and punishing information impacts popu-
lation dynamics and the emergence of cooperation.

Overview

The first set of experiments involved comparing the levels of cooperation achieved within 
populations when reputation is calculated using playing behavior alone, punishing behav-
ior alone or both playing and punishing behavior. Another set of experiments evaluated the 
impact of allowing agents to observe reputational information during playing and punish-
ing decisions, in addition to using reputational information during partner selection. These 
experiments compared the levels of cooperation achieved by populations when reputational 
information was added to either the playing state, the punishing state, both the playing 
and punishing state or neither state. These experiments were conducted on populations that 
used third-party punishment with partner selection and reputation, as well as populations 
that used direct punishment with partner selection and reputation.

The following experimental results determine the optimal set of playing and punishing 
information that should be included in the calculation of agent reputations to maximize the 
emergence of cooperation within populations. These results also provide an insight on the 
relative importance of including playing and punishing information within reputations and 
the usefulness of including reputational information in playing and punishing states.

Table 2   Hyperparameters used for all experiments, with a target update of 200, a discount rate of 0.9 and a 
batch size of 100

Max Buffer Size Min � Max � � Decay Learning Rate

Selection Model 131072 0.0001 0.8889 0.3 0.01
Playing Model 131072 0.01 0.8889 0.3 0.1
Punishing Model 524288 0.2 0.8889 0.5 0.001
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Populations using third‑party punishment with partner selection and reputation

As shown in Fig.  8, cooperation per episode in populations using third-party punish-
ment with partner selection and reputation is maximized when each agent’s reputation is 
calculated using both their playing and punishing behavior. While calculating an agent’s 
reputation using their playing behaviors alone results in a similar outcome to calculating 
their reputation using both their playing and punishing behaviors, calculating an agent’s 
reputation using their punishment behaviors alone results in substantially lower levels 
of cooperation at convergence. This indicates that the presence of long-term playing 
behavior information within the calculation of agent reputations increases the likelihood 
of the emergence of cooperation within a population, compared to the presence of long-
term information about punishing decisions.

The relative importance of including playing and punishing behavior in the calcu-
lation of reputation varies during the initial stages of learning. Between the first and 
the 500th episode, populations calculating agent reputations using punishment behav-
ior alone achieve the highest level of cooperation per episode, with the populations 
using other forms of reputation achieving significantly lower levels of cooperation per 
episode. This indicates that during the early stages of learning, information about an 
agent’s punishment behaviors is a more effective signal of their trustworthiness than 
information about the agent’s playing behaviors. Additionally, during the initial stages 
of learning, populations that calculate an agent’s reputation solely based on the agent’s 
playing behaviors achieve slightly higher levels of cooperation per episode compared to 
populations that calculate an agent’s reputation based on both their playing and punish-
ing behaviors. The delayed onset of cooperation associated to the calculation of reputa-
tions using both playing and punishing behavior may be due to the increased complexity 
of learning how to interpret a reputation calculated from two information sources com-
pared to a single information source.

Fig. 8   Cooperation per episode achieved by calculating reputation using both playing and punishing behav-
iors, only playing behaviors or only punishing behaviors, within populations using third-party punishment 
and partner selection
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However, after 500 episodes, the level of cooperation per episode achieved by popula-
tions calculating reputation using punishing behavior alone rapidly decreases compared to 
the levels of cooperation per episode achieved by populations considering playing behavior 
in agent reputations, both alone and in conjunction with punishment behavior. This sug-
gests that only using punishment behaviors to calculate an agent’s reputation is too limited 
to encourage a widespread emergence of cooperation within a population. This also indi-
cates that though cooperation benefits from the presence of both playing and punishing 
information within agent reputations, the main value of the reputation mechanism is its 
ability to provide populations with a long-term view of each agents’ playing behaviors.

Figure 9 illustrates that cooperation per episode is maximized when agents have access 
to reputational information when playing the dilemma game, but not for punishing deci-
sions. This indicates that though access to reputational information is useful for coopera-
tors trying to avoid exploitation by defectors when playing the Prisoner’s Dilemma, it is 
harmful when an agent is deciding whether or not to punish another agent. This suggests 
that cooperation benefits from punishments based on an agent’s current actions instead of 
their past behaviors. Though not including any reputational information in the states ini-
tially results in the highest levels of cooperation within the population, after 750 episodes 
it converges to a lower level of cooperation compared to when reputational information 
is available in the state used for playing the dilemma game. This suggests that though the 
inclusion of both the agents’ previous actions and their reputations in the state used for 
playing decisions results in slower learning, as agents must learn to use a larger amount of 
information, it leads to higher levels of cooperation in the long term.

Including reputational information in the state used for punishing decisions or in both 
states results in the emergence of defection within the population. This indicates that the 
availability of reputational information in third-party punishment decisions is detrimental 
to the development of just punishment and enables defection to flourish.

Fig. 9   Cooperation per episode achieved when reputation is included within play states, punish states and 
both play and punish states, in addition to the cooperation per episode achieved when reputation is not 
included within either the play or punish states. This is within populations using third-party punishment and 
partner selection
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Populations using direct punishment with partner selection and reputation

Figure  10 indicates that allowing both playing and punishing behaviors to contribute to 
the calculation of agent reputations results in the highest levels of cooperation per episode 
at convergence for populations using direct punishment and partner selection and reputa-
tion. This suggests that the availability of long-term information about both the playing and 
punishing behaviors of each agent provides a more effective signal of agent trustworthiness 
compared to when reputations are calculated using an agent’s playing or punishing behav-
ior alone. However, similarly to the case of populations using third-party punishment with 
partner selection and reputation, the relative importance of playing and punishing informa-
tion to the emergence of cooperation within populations varies during the learning process.

Up to the 500th episode, the availability of punishment behavior information is more 
important for the emergence of cooperation than the availability of playing behavior infor-
mation. This is evidenced by the populations that determine an agent’s reputation using 
their punishing behavior alone achieving the highest cooperation per episode within this 
time period. However, after 500 episodes, the cooperation per episode achieved by popula-
tions that calculate an agent’s reputation using their punishing behavior alone converges 
to a much lower level compared to populations that calculate agent reputations based on 
both playing and punishing behavior or playing behavior alone. This indicates that while 
punishment behavior information plays an important role in the early stages of learning, 
its usefulness wanes in comparison to playing behavior information in the later stages of 
learning. This result mirrors the findings identified in the third-party punishment setting. 
This indicates that the relative importance of punishing and playing behavior information 
is similar across both types of punishment in the Prisoner’s Dilemma.

Between the 500th and 750th episodes, populations calculating reputation using an 
agent’s playing behavior alone experience a sharp, small and short-lived spike in coop-
eration per episode, before the levels of cooperation decrease slightly at convergence. 

Fig. 10   Cooperation per episode achieved when reputations are calculated using both playing and punishing 
behaviors, playing behaviors alone and punishing behaviors alone, within populations using direct punish-
ment and partner selection
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Whereas, the cooperation per episode achieved by populations using both playing 
and punishing behavior information to calculate each agent’s reputation continues to 
increase until it converges to the highest level overall. This suggests that, while informa-
tion about the playing behaviors of agents plays a greater role in enabling an increase in 
the level of cooperation within a population in the later stages of learning, the presence 
of information about the punishment behaviors of an agent is still beneficial.

Unlike the third-party punishment case, Fig. 11 suggests that cooperation per episode 
is maximized in a population using direct punishment when reputation is not included in 
the definition of states used for playing or punishing other agents. Therefore, reputation 
has a limited ability to aid the decision making process in populations that rely on direct 
punishment, partner selection and reputation, beyond allowing agents to select trustwor-
thy interaction partners during partner selection.

Similarly to the third-party punishment setting, including reputation in the state used 
for punishment decisions results in the emergence of defection within populations. This 
indicates that providing access to reputational information in the punishment step is 
harmful to the emergence of cooperation, regardless of the type of punishment used. 
Interestingly, while including reputation in the state used for the dilemma playing model 
does lead to some emergence of cooperation, including reputation information in both 
the states used by the dilemma game playing model and the punishment model results in 
the lowest levels of cooperation overall. This suggests that the negative impact to coop-
eration produced by including reputation information in the states used by the punish-
ment model outweighs the positive affect of including the information in the states used 
by the dilemma playing model.

Fig. 11   Cooperation per episode achieved when reputational information is included in the state used by the 
dilemma playing model (play state), or when it is included in the state used by the punishment model (pun-
ish state) or when it is included in both the play and punish states. The figure also shows the cooperation 
per episode achieved when no reputational information is included within either the play or punish states. 
This is within populations using direct punishment and partner selection
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Appendix C: Determining impact of population size on cooperation

To determine the impact of population size on the experiments conducted, the experiments 
were also conducted on populations of size 5, 10, 15, 20, 25 and 30. As shown in Fig. 12, 
all the populations, regardless of size, converged to cooperation at similar rates. Figure 12a 
indicates that in populations where third-party punishment and partner selection are both 
present, larger populations achieve slightly higher levels of cooperation per episode at 
equilibrium compared to smaller populations. This suggests that the efficacy of third-party 
punishment receives some benefit from larger population sizes. However, in the case of 
direct punishment and partner selection, shown in Fig. 12b, there does not appear to be a 
meaningful pattern between levels of cooperation and different population sizes.

Though all populations converge to the same levels of cooperation in each case, 
Figs.  12c and 12d show that the percentage of just punishers selected at convergence is 
not uniform between population sizes. Figure 12c shows that smaller populations are more 
likely to select just third-party punishers, whereas Fig. 12d indicates that larger populations 
are more likely to select just direct punishers.

The result for third-party punishment may be influenced by the increased levels of 
defection in the 5 agent case compared to the other population sizes, which increases the 

Fig. 12   Impact of different population sizes on populations using direct punishment with partner selection 
or third-party punishment with partner selection. The general behavior observed is similar across all popu-
lation sizes
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opportunity for just punishment in the latter stages of learning and therefore, increases the 
number of just punishers available for selection. However, this is not the case in the context 
of direct punishment. Figure 4b shows that all agents learn to justly punish all the time and 
Fig. 12b shows that approximately 10% of the population remain defectors. This indicates 
that larger populations do value direct punishment more than smaller populations.

Appendix D: Examining the role of conditional strategies 
in the emergence of cooperation

To determine whether it is sufficient for agents to act conditionally without considering 
punishment to promote cooperation the simulation was changed to remove the partner 
selection and punishment mechanisms in order to isolate the impact of conditional strate-
gies emerging from indirect observation and direct past interactions. Figure 13 shows that 
in this case, cooperation fails to evolve within the population resulting in a societal col-
lapse where all the agents defect.

This result aligns with findings from previous work studying the impact of social mech-
anisms on MARL populations [5, 26]. In [26], the authors show that RL agents fail to 
achieve cooperation in the presence of reputational information as the presence of repu-
tational information changes the Prisoner’s Dilemma into a Stag-Hunt-like game, with 
the RL agents converging to an inefficient equilibria in the absence of changes to intrinsic 
rewards or the environment. Similarly, in [5] the authors show that a population of RL 
agents using memory-one direct reciprocity (own and partner’s previous move) fails to 
learn cooperation. Figure 13 further builds on these results by showing that the combina-
tion of these mechanisms still fails to achieve cooperation and results in convergence to 
inefficient equilibria. Together, these results indicate that reputation and direct past inter-
actions are not sufficient for promoting cooperation. This provides further credence to the 
idea that reputation and direct past interactions are not individually strong factors in the 

Fig. 13   Cooperation per episode for a population using past interactions and reputation fails to converge to 
cooperation
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emergence of cooperation within the population, but rather they act in tandem with other 
mechanisms.

Appendix E: Cooperation dynamics emerging from populations using 
scheme 1 to reward just punishment

The following figures show the learning dynamics emerging from populations using 
Scheme 1 to reward just punishment (Figs. 14, 15, 16 and 17).   

Appendix F: Determining neural network size

Smaller network sizes were tested and we found that 128 nodes resulted in the most con-
sistent and therefore, informative results. A comparison of the cooperation graphs for a 
network with 128 nodes compared to network with 64 nodes can be found below. At con-
vergence, you can observe that the 95% CI for DP and DP-S is much wider for the 64 node 

Fig. 14   All populations, regardless of the social mechanism combination used, fail to converge to coopera-
tion when just punishment is costly

Fig. 15   None of the populations learn to punish when just punishment is costly
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network compared to the 128 node network. This difference is further shown by the DP and 
DP-S comparison graphs below (Figs. 18 , 19). 

Appendix G: Experimental code

The code used to perform the experiments used in this study can be found at the following 
link: https://​github.​com/​nayan​adasg​upta/​Under​stand​ing_​Punis​hment_​In_​MAS_​With_​RL.

Fig. 16   All populations eventually always perform just punishment, but only because the population con-
verges to defection (so the punishment is always just). This convergence to just punishment has no impact 
on cooperation dynamics as populations also converge to not using punishment. Populations using third-
party punishment or third-party punishment with partner selection have higher levels of unjust punishment 
during the early stages of learning as a result of having a higher proportion of cooperators

Fig. 17   Populations using third-party punishment or combined third-party punishment initially have 
higher  levels of societal reward compared to populations using direct punishment due to higher levels of 
cooperation. However, as populations converge to defection, populations using both third-party and direct 
punishment obtain the lowest levels of reward due to punishment occurring twice. Populations using third-
party punishment or both third-party and direct punishment achieve the lowest levels of reputation as a 
result of greater levels of unjust punishment occurring during the early stages of learning

https://github.com/nayanadasgupta/Understanding_Punishment_In_MAS_With_RL
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Fig. 18   Cooperation per episode. A 128 node neural network results in more consistent results

Fig. 19   Cooperation per episode for populations using direct punishment and direct punishment with part-
ner selection. The results emerging from the 128 node network are more consistent than the results emerg-
ing from the 64 node network
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