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Abstract. Gossip-based communication and epidemic-style routing al-
gorithms have been proposed to achieve scalability in distributed systems
and to support probabilistic communication when the application of the
classic deterministic algorithms and protocols is impossible or unsuit-
able. In this paper, we present a middleware for probabilistic communi-
cation that relies on optimised epidemic-style information dissemination
techniques for distributed systems, based on recent results of complex
networks theory. The novelty of our approach resides in the evaluation
and the exploitation of the structure of the underlying network for the
automatic tuning of the dissemination process to control. With respect to
unicast communication, we show that protocols that statistically ensure
the desired reliability level in the case of homogeneous networks (i.e., a
network composed of nodes with the same degree of connectivity) can be
designed. We demonstrate that these results can be exploited also in the
case of anycast and multicast communication to tune and optimise the
replication process. We evaluate our approach analysing the application
of these techniques to the case of mobile ad hoc systems, a specific class
of distributed systems. Finally, we generalise the model to the case of
heterogeneous networks.

1 Introduction

The analogy between information dissemination in distributed systems and epi-
demics transmission in communities is evident: the process of replication and
dissemination of messages in a distributed system can be modelled as the spread
of epidemics in a social network. A host can be referred to as infected when
it receives a piece of information and stores it and susceptible (i.e, it could be
infected) otherwise. The analogy is even more evident when the content of the
information transmitted is malicious as in the case of computer viruses [7].

Epidemics-inspired techniques have received huge attention in recent years
from the distributed systems community [28, 11]. These algorithms and protocols
rely on probabilistic message replication and redundancy to ensure reliable com-
munication. Epidemic techniques were firstly applied to guarantee consistency
in distributed databases [8]. More recently, these algorithms have been applied
to support group communication in distributed systems. In particular, several



protocols have been proposed for broadcasting [19, 12], multicasting [4, 10] and
information dissemination [17].

A key aspect has been only marginally or empirically considered in these
works (with the only exception of [19]): the evaluation and the adaptation to
the underlying network topology. This is also due to the fact that many inter-
esting works on the epidemic modelling in complex networked systems are very
recent [1, 9]. Many social, biological and computer systems can be described by
complex networks, where nodes represents individuals or hosts and links repre-
sent the interactions among them [22]. In the case of computer systems, links are
either physical (wired or wireless) or virtual, like in overlay networks, such as
peer-to-peer systems. The use of these recent complex network theories allows us
to devise a more precise model of the dissemination and to control the reliability
level that can be imposed on message delivery, by evaluating the distribution of
the degree of connectivity of nodes. In other words, the number of the replicas
around the network and their persistence can be controlled to support a delivery
process that is characterised by the reliability specified by developers. Moreover,
by using these results we designed algorithms that are able to adapt dynamically
to possibly variable degrees of connectivity of the hosts.

Complex networks are usually classified in two main groups depending on the
distribution of the degree of connectivity of the nodes (i.e., the number of the
links of the hosts): exponential networks and scale free networks. The formers
are characterised by a connectivity distribution P (k) peaked at an average value
〈k〉. Typical examples are random graph model [5] and the small-world model
proposed by Watts and Strogatz [29], characterised by an average path length
(i.e., the average shortest chain of links connecting any two vertices) which in-
creases very slowly - approximately logarithmically - with the network size. Scale
free networks are characterised by fluctuations of the degree k that any given
node may have. Examples of scale-free networks are the World Wide Web and
the Internet [1]. More precisely, the node degree of scale free networks exhibits
a power-law connectivity distribution P (k) ∼ k−2−γ with γ > 0. Exponential
networks are characterised by very small fluctuations (i.e., the degree of every
vertex can be approximated as k ≈ 〈k〉); for this reason, they are also identified
as homogeneous networks. This corresponds to the homogeneous mixing assump-
tion that is usually made by epidemiologists in a large number of studies [2]: all
individuals in the population have the same number of acquaintances that can
be infected. On the other hand, for the inherent fluctuations of the degree of
connectivity, scale-free networks are classified as heterogeneous networks.

In this paper we present an original and optimised epidemic dissemination
strategy for distributed systems based on these recent results of complex net-
works theory. We demonstrate that the number of replicas spread around the
network can be tuned by setting the probability of infection; more specifically,
the contribution of this paper can be summarised as follows:
– We design a dissemination algorithm that relies on epidemic models taking

into account the structure of the underlying network, by using recent results
in complex networks theory concerning the modelling of epidemics spreading;
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– We define a middleware interface for probabilistic communication and infor-
mation dissemination in distributed system that allows the programmers to
set the reliability for unicasting and anycasting based on these theoretical
results with a high degree of accuracy, also in presence of failures;

– We apply these novel techniques to the case of mobile ad hoc networks,
showing that the dissemination of the messages can be tuned with good
accuracy, while limiting the number of replicas in the system at the same
time.

We will firstly assume distributed systems with homogeneous network structure,
characterised by exponentially bounded probability distribution. Then, we will
discuss a possible extension of the proposed model to the case of heterogeneous
networks.

This paper is structured as follows. Section 2 provides a brief introduction
to epidemic spreading models proposed in the recent complex networks studies
and discuss the design of possible information dissemination strategies based on
them. Section 3 introduces the programming interface for probabilistic commu-
nication. The implementation of the algorithms supporting this API is analysed
in Section 4. A case study illustrating the application of these techniques to the
problem of information dissemination in mobile ad hoc networks is presented
in Section 5. In Section 6 we compare our approach to existing work, underlin-
ing its novelty and possible extensions of the model to heterogeneous networks
scenarios. Section 7 concludes the paper, summarising its contribution.

2 Design of Dissemination Techniques Based on Epidemic
Models

In this section, we discuss the application of mathematical models of epidemic
spreading to the problem of probabilistic communication and information dis-
semination in distributed systems. We consider a system composed of nodes
characterised by a finite buffer size, which is a realistic assumption. The com-
munication in the system is message passing based. Messages are composed of
a header, containing information that is used to perform the shipment and a
body, containing the data that has to be sent to a specific host. Every message
is characterised by a unique identifier. An expiration time field is used to specify
its validity. Given the limited buffer size, every node can store a finite number
of messages. These are inserted in the buffer only if not already present.

In order to model the replication mechanisms for the messages, we exploit
mathematical models that have been devised to describe the dynamics of infec-
tions in human populations [13]. The study of mathematical models of biological
phenomena has been pioneered by Kermack and McKendrick in the first half of
the last century. In the following decades, their work has been considerably ex-
tended and, nowadays, the study of epidemiology from a mathematical point of
view is a mature scientific discipline. In particular, mathematical models of infec-
tion spreading of human diseases have been developed and successfully exploited
to predict the evolution of the epidemics with the aim of finding effective coun-
termeasures [2]. Very recently, researchers in the area of complex networks theory
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have focused their attention on the problem of modeling epidemics spreading in
networks characterised by well-defined structures [23, 21, 3]. These theories offer
a very effective basis for the development of fundamentally new and efficient
information dissemination strategies.

We now briefly introduce the mathematical models that we exploit to de-
sign the dissemination algorithms. These are at the basis of the design of the
middleware interface that we will present in Section 3.

2.1 The SIS Model for the Design of Epidemic Algorithms

In this work, we use an infection spreading model based on the classic set of equa-
tions proposed by Kermack and McKendrick in 1927. The Kermack-McKendrick
model was initially proposed to explain the rapid rise and fall in the number of
infected patients observed in epidemics such as the plague (London 1665-1666,
Bombay 1906) and cholera (London 1865) . This model is still widely used by
epidemiologists nowadays.

According to the general Kermack-McKendrick model, an individual can be
in three states: infected, (i.e., an individual is infected with the disease) suscepti-
ble (i.e., an individual is prone to be infected) and removed (i.e., an individual is
immune, as it recovered from the disease). This kind of model is usually referred
to as the Susceptible-Infective-Removed (SIR) model [2]. In this paper we use
a simplified version of the model, according to which individuals can exist in
only two possible states, infected and susceptible. In the literature, this model is
usually referred to as Susceptible-Infective-Susceptible (SIS) model [2].

We now map this model onto a network of communicating hosts, where mes-
sages are disseminated. In the remainder of this paper we will substitute the
term individual, used by epidemiologists, with the term host. A host is consid-
ered infected, if it holds the message and susceptible if it does not. If the message
is deleted from the host, the host becomes susceptible again.

The main assumptions of the model are the followings:
– all susceptibles in the population are equally at risk of infection from any

infected host (this hypothesis is usually defined by epidemiologists as homo-
geneous mixing);

– the infectivity of a single host, per message, is constant1;
– there is no latent period for the infection;
– every host collaborates to the delivery process and no malicious nodes are

present;
– the traffic in the system is homogeneous;
– each node has a buffer of the same size;
– there are no communication failures;
– the initial number of hosts and the host failure rate are known a priori by

each host2;

1 Note that the infectivity per single message (i.e., a disease) is constant, but not per
single host. In other words, a host usually stores messages characterised by different
infectivities in its buffer.

2 This could be the result of a prediction over previous behaviour of the network.
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– the host failure rate can be approximated as a stationary process within the
time interval of infection spreading (i.e., the number of hosts is considered
constant during the spreading of the infection);

– the failures of the nodes are uniformly random distributed and permanent.
As discussed in Section 1, the hypothesis of homogeneous mixing corresponds
to the assumption of homogeneous networks for which the node degree of each
host can be approximated with the average degree of the network: k ≈ 〈k〉.

Under the assumptions above, the dynamics of the infectives and susceptibles
in the case of a scenario composed of N(t) active hosts (i.e., not failed) can be
described by means of a system of differential equations as follows:

(1)



dS(t)
dt

= −βS(t)I(t) + γ(t)I(t)

dI(t)
dt

= βS(t)I(t)− γ(t)I(t)

dN(t)
dt

= −φN(t)

S(t) + I(t) = N(t)

where I(t) is the number of infected hosts at time t, S(t) is the number of
susceptible hosts at time t, β is the average number of contacts with susceptible
hosts that leads to a new infective per unit of time per infective in the population,
γ is the average rate of removal of infectives from circulation per unit of time
per infective in the population and φ is the failure rate (i.e., the probability
that one host fails per unit of time). The equations of the system state that the
decaying rate of susceptibles and the growth rate of infectives are calculated by
considering two competing effects: the first, proportional to the infectivity β,
the number of susceptibles S(t) and the number of infectives I(t); the second,
proportional to the removal rate γ and the number of infectives I(t). The third
equation is a consequence of the hypothesis of closed system (i.e., the nodes are
the same and the number of hosts is constant over the interval of time taken
into consideration).

By solving the system using the initial condition I(t) = I0 (where I0 is the
number of initial hosts infected), we obtain that the number of infectives at time
t is described by the following equation:

(2) I(t) =
I0e

αβt

1 +
I0

α
(eαβt − 1)

with α = N(t) − γ

β
. N(t) is considered constant during the entire epidemic

process. In our case the initial condition is I0 = 1: this represents the first copy
of the message that is inserted in its buffer by the sender. This result can be used
to calculate the number of infectives at instant t with a given infectivity β and
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a given removal rate γ, or, more interestingly for our purposes, β and γ can be
tuned in order to obtain a certain epidemics spreading, after a certain time has
passed. The infectivity β is the fundamental parameter of the message replication
algorithm. In fact, a certain infectivity β can be selected in order to obtain, at
time t∗, a number of infectives (i.e., hosts that have received the message) equal
to I(t∗) or, in other words, a percentage of infectives3 equal to I(t∗)/N(t∗). The
parameter γ can be interpreted as the deletion rate of the messages from the
buffer of the hosts. In fact, since the message buffers have limited size, it may
be necessary to delete some messages according to a certain policy. Thus, from
the average removal rate of messages from buffer, it is possible to derive the
infectivity that it is necessary and sufficient to spread the infection. In the case
where the absence of overflow phenomena (i.e., in the case of sufficiently large
buffers) can be assumed, the model can be simplified by setting γ = 0.

In order to effectively exploit the model just described, the actual connectiv-
ity of each host should be kept into account. This information is therefore used
for the dynamic adaptation to the network structure: in the following subsec-
tion, we will discuss a refinement of the model, which introduces a parameter
measuring the connectivity of each host.

2.2 Models of Epidemics Spreading in Networks

The Kermack-McKendrick model described in the previous section has recently
been applied to the analysis of the epidemic spreading in complex networks [23,
21, 3]. Various parameters can be extracted, which indicate interesting properties
of networks [1]. One of the most important is the average degree of connectivity
〈k〉. The node degree of connectivity k is defined as the number of edges (or links)
of a certain node. As discussed in Section 1, in homogeneous networks, such as
random graphs4, the node degree k for each node can be approximated quite
precisely with the average degree of connectivity 〈k〉 of the network. Therefore,
in case of homogeneous networks, in order to take into account the effect of the
connectivity, we rewrite the system in (1) as follows:

(3)



dS(t)
dt

= −λ
〈k〉
N

S(t)I(t) + γ(t)I(t)

dI(t)
dt

= λ
〈k〉
N

S(t)I(t)− γ(t)I(t)

dN(t)
dt

= −φN(t)

S(t) + I(t) = N(t)

3 Note that β = f(I(t)) is not defined for I(t) = N(t). Therefore, from a practical
point of view, in the case of a message sent to all the hosts of the system, we will use
the approximation I(t) = N(t)− ε, with ε > 0, in the expression used to calculate β.

4 The degree distribution of a random graph is a binomial distribution with a peak at
P (〈k〉).
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The first equation states that the number of susceptible hosts is given by the
sum of a term proportional to the spreading rate λ, the number of susceptible
nodes that may become infected, S(t), the number of infected individuals in
contact with any susceptible node and a term, γI(t), that represents the number
of infectives that recover and then become susceptible again per unit of time. The
second equation can be interpreted in a similar way. The third equation models
the variation of the number of hosts; the fourth encapsulates the assumption
that hosts that did not fail are either infected or susceptible. λ represents the
probability of infecting a host that is connected. The solution of this system is
similar to that of (1) (i.e., it is sufficient to substitute β with λ 〈k〉

N ). Thus, it is
possible to calculate λ as function of I(t∗) and 〈k〉. Finally, it is interesting to note
that in homogeneous networks, every host knows its value of k and, consequently,
of 〈k〉. We will exploit this property to tune the spreading of message replicas in
the system.

2.3 Analytical Study of the Properties of the System

In this section we will analyse two interesting aspects that can be derived from
the mathematical models previously discussed. In particular, (i) we will study the
conditions that are necessary in order to obtain the spreading and the persistence
of the messages in the system; (ii) we will derive an estimation of the total
number of replicas that are necessary to ensure a desired level of reliability; (iii)
we will study the conditions under which the hypothesis of constant number of
hosts in the calculation of the infectivity is valid.

Spreading and Persistence of Messages A fundamental parameter in epi-
demiology is the basic reproductive number R0 [3]. This can be interpreted as
the number of hosts infected by one primary infective. In epidemiology, this is
generally used to evaluate the conditions which generate an epidemic outbreak
in a population.

Under the given assumptions, the basic reproductive number is defined as:

(4) R0 =
λ〈k〉

γ

From (3), it can be deduced that the epidemics will spread only if R0 > 1. In

fact, this is the condition to obtain
dI

dt
> 0. In other words, if the reproductive

number is greater than 1, the epidemics will be able to generate a number of
infected hosts larger than those which are recovered per unit of time. Given the
spreading rate λ and the average degree 〈k〉, it is interesting to calculate the value
of the minimum admissible basic reproductive number R0MIN , corresponding to
the maximum admissible value of the removal rate γMAX .

We start by calculating the probability that a message must be deleted from
the buffer in order to free space. This will happen when a message is received,
which is not already in a full buffer. With Phit(t) we indicate the probability at
time t of receiving from a neighbour a message that is already in the buffer (with
a size equal to BufferSize). Therefore, the probability that another message will
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be deleted and replaced is equal to:

(5) Preplacement = 1− Phit

Finally, it is possible to re-write R0 as follows:

(6) R0 =
λ〈k〉

γ
=

λ〈k〉
λ〈k〉NPreplacement

=
1

NPreplacement

Thus, R0 will be greater than 1 if and only if Preplacement < 1
N . In other words,

if the buffer is large enough to ensure that the average removal rate is less than
1
N , the messages will remain in the system until their expiration time. This
corresponds to the endemic phase of the infection [23].

If the removal rate is higher than this threshold, the middleware will not be
able to guarantee the persistence of the messages in the system. We will use this
result to design a middleware mechanism for determining when a notification
that the message cannot be disseminated needs to be issued to the application.

Considering a scenario with buffers full of messages, the maximum value of
Preplacement corresponds to the case where the messages are uniformly randomly
distributed in the system. In fact, this scenario has the highest probability of
message deletion due to the fact that neighbours send a message not already
stored in the buffer of the host (i.e., it is the case that corresponds to the min-
imum value of Phit). Considering a number of different types of messages (i.e.,
messages with different identifiers) around the network equal to M , we can cal-
culate Phitmin

as follows:

(7) Phitmin
= (

bufferSize
M

)2

Consequently, Preplacementmax
can be calculated as follows:

(8) Preplacementmax
= 1− Phitmin

In general, the value of Preplacement is dependent on the number of types of mes-
sages, their infectivities and the different stages of the dissemination processes
(i.e., infections) that are present in the system.

Number of Messages in the Network Another interesting quantitative pa-
rameter is the total number of messages needed to disseminate messages to a
certain percentage of hosts. In particular, we now evaluate the number of repli-
cas sent, per message, in the case of infinite buffers (i.e., γ = 0). In order to
obtain the total number of messages in the network, we multiply this value for
the average buffer size. Considering an infection process repeated for a number
of times equal to R number of rounds, indicating with tR the time of the Rth

round, the total number of replicas can be estimated as follows:

(9) NumberOfReplicas = N

∫ t=tR

t=0

λ〈k〉I(t)dt
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From (3), since the result of the integral is a costant, it is possible to approximate
(9) as follows:

(10) NumberOfReplicas = O(N)

where N is the number of the hosts in the system.

Stationary Approximation of the Number of Hosts and Failure Rate
In this subsection, we will discuss the conditions under which the stationary
approximation of the number of hosts is valid. Let us now consider the third
equation in 3; we will solve it considering the time interval [tin, tfin] during which
the epidemic dissemination process happens. Considering the initial number of
hosts N(tin) = Nin and the final number of hosts N(tfin) = Nfin, we would
like to study the conditions under which Nin ' Nfin (i.e., the number of hosts
is roughly constant in the interval of time taken into consideration). By solving
the equations under these conditions, indicating τ = tfin − tin, we obtain:

(11) Nfin = Nine−φτ

Therefore, in order to have Nfin ' Nin we should have:

(12) Nin ' Nfin

This expression can be re-written using (11) as follows:

(13) Nin ' Nine−φτ

That is equivalent to

(14) e−φτ ' 1

Thus, the stationary approximation is valid only if φτ ' 0. In other words, the
approximation is better when the product of the failure rate and the interval
during which the message spreading happens is closer to 0. This means that, in
order to obtain accurate results, the number of node failures in the time interval
of the spreading should be negligible. While this can be acceptable for certain
networks where failure rate is quite low, in other cases this could not be an
accurate model. We are investigating extensions of our model to incorporate a
higher failure rate.

In the next section, we will show how these results can be used to design a
middleware that allows for reliable and, at the same time, tunable probabilistic
communication and information dissemination in distributed systems. We will
also confirm the preciseness of this analysis in Section 5 by means of application
to the mobile ad hoc network case study and simulation results.

3 Middleware Primitives for Probabilistic Communication

Our goal is to provide a set of primitives that allows developers to tune in-
formation dissemination in networks according to their specific application re-
quirements. This problem can be evaluated from two different perspectives. In
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fact, the spreading of information from a source A to a certain percentage Ψ of
the hosts of the system can be seen as the problem of sending a message from
host A to another randomly chosen host B with a certain probability Ψ . This
probability can be interpreted as the reliability of the delivery mechanism.

In Section 2.2 we have shown that it is possible to select a certain infectivity
level to make sure that, at time t∗, a certain number of hosts have received the
message. This parameter can be used to control the reliability of the unicast
probabilistic communication mechanism. In other words, using the same nota-
tion, given an expected reliability (or percentage of hosts that has to be infected)
equal to Ψ , it is possible to calculate the value of β in order to have I(t∗) = ΨN .

Starting from these considerations, we designed two primitives to support
probabilistic communication in distributed systems that capture these two com-
plementary perspectives. First of all, we design a primitive for probabilistic uni-
cast communication:

epsend(message,recipient,reliability,time)

where message is the message that has to be sent to the recipient with a
certain probability measured by the value reliability (that has to be chosen
in the range [0, 1]) in a bounded time interval defined by the time field. The
field reliability is used to set the value of Ψ . The validity of the message
corresponding to the interval of time during which the infection will spread is
specified by the field time.

Similarly, we introduce a primitive for probabilistic anycast communication
as follows:

epcast(message,percentageOfHosts,time)

where message is the message that has to be sent to a certain percentage of hosts
equal to the value defined in percentageOfHosts in a bounded time interval
equal to time. In this case the field percentageOfHosts is used to set the value
of Ψ .

It is interesting to observe that, by using these basic primitives, more com-
plex programming interfaces and communication infrastructures can be designed,
such as publish/subscribe systems. In the next section, we will discuss a possi-
ble implementation of our primitives based on the analytical epidemic models
presented in Section 2.

4 Implementation of the Middleware Interface

We now analyse the implementation of the programming interface for probabilis-
tic communication based on the dissemination techniques presented in Section 2.
Every time one of the two primitives is invoked, the middleware calculates the
value of the infectivity λ that is necessary and sufficient to spread the informa-
tion with the desired reliability in the specified time interval, by evaluating the
current average degree of connectivity and the current removal rate of messages
from the buffer. The message identifiers, the value of the calculated infectivity,
the timestamp containing the value specified in time expressing its temporal
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avDegreeOfConnectivity=System.getAvDegreeOfConnectivity();
deletionRate=System.getDeletionRate();
infectivity=calculateInfectivity(reliability,deletionRate, avDegreeOfConnectivity,time);
basicReproductiveNumber=System.getBasicReproductiveNumber();
if (basicReproductiveNumber>1) {

m=new Message();
m.setMessageId(System.generateMessageId());
m.setRecipient(recipient);
m.setContent(messageContent);
m.setInfectivity(infectivity);
m.setTimeStamp(time);
System.addToBuffer(m);

} else throw new deliveryException();

Program 1: Calculation of the parameters of the message

for (int i=0;i<numberOfMessagesStored;i++) {
infectivity=buffer[i].getInfectivity();
for (int k=0;k<numberOfHostsInReach) {

rValue=random(0,1);
if (rValue<=infectivity)

sendMessage(buffer[i],k);
}

}

Program 2: Epidemic Spreading Algorithm

validity are inserted in the corresponding headers of the message in the infec-
tivity field. Then, the message is inserted in the local buffer. By evaluating the
basic reproductive number as discussed in Section 2.3, if it not possible to ensure
the specified reliability (i.e., the basic reproductive number is less than 1), an
exception is thrown.

A possible implementation using an object-oriented programming style is
presented in the box Program 1. The box Program 2 contains the epidemic
spreading algorithm. This procedure is executed periodically with a period equal
to τ . With respect to the calculation of the message infectivity, it is possible to
assume τ as time unit in the formulae presented in Section 2. In other words,
assuming, for example, τ = 10, a timestamp equal to one minute corresponds to
six time units. The value of τ can be set by the application developer during the
deployment of the platform. Clearly, the choice of the values of τ influences the
accuracy of the model, since it is rely on a probabilistic process. For this reason,
given a minimum value of timestamp equal to tMIN , developers should ensure
τ << tMIN . The number of rounds will be equal to t∗/τ . For the Law of the
Large Numbers, we obtain a better accuracy of the estimation of the evolution
of the epidemics as the number of rounds (i.e., from a probabilistic point of view,
the number of trials) increases. In the remainder of this paper we will discuss
the application of these techniques to the scenario of mobile ad hoc networks.
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5 Case Study: Application of the Model to Mobile Ad Hoc
Networks

We now discuss a case study that shows a possible application of the concepts and
models discussed in the previous section to distributed systems. More specifically,
we apply our approach to the case of mobile ad hoc networks. We chose this
case, since we think that it reflects naturally the idea of spreading of infection
by means of occasional contacts. However, these concepts can be applied to other
classes of distributed systems, such as peer-to-peer applications.

Routing in very dynamic mobile ad hoc networks is extremely challeng-
ing [24]. Multicast routing is even more difficult, since, for example, in dynamic
networks it is extremely hard to maintain the multicast tree. An even more
challenging problem is the one of enabling communication in presence of inter-
mittently disconnected networks. Classic routing protocols for ad hoc networks
simply fail in the case of disconnections. The use of epidemic-style routing pro-
tocols allows for communication in highly dynamic networks also in presence of
temporary disconnections or network partitions, without the need of maintain-
ing any state, that could be easily become stale, on the intermediate hosts. We
will discuss the relevant existing work in this area in Section 6.

We evaluated the proposed system and model by considering the case of
unicast communication with a given reliability specified by the user (i.e., the
delivery mechanisms that are at the basis of the epsend() primitive). We do not
consider the case of anycast communication, since, as discussed, it relies on the
same delivery process.

5.1 Description of the Simulation

In order to test the performance of these techniques in mobile scenarios composed
of a realistic number of hosts, we implemented and ran a series of simulations
by using the popular open source discrete-event simulator OMNeT++ [27]. We
defined a square simulation area with a side of 1 km and a transmission range
equal to 200 m. The simulation was set to run 10 replicates for each mobile
scenario in order to obtain a statistically meaningful set of results. The intervals
between each message are modelled as a Poisson process. We studied scenarios
characterised by different number of hosts (more precisely 32, 64, 96, 128). These
input parameters model typical deployment settings of mobile ad hoc networked
systems. We do not model explicitly the failures in the system, since we assume
that during the infection process, the number of hosts remains constant (i.e., we
assume that the conditions discussed in Section 2.3 are valid). In other words,
this figure represents the number of hosts that are active in the system.

All the messages are sent in the first 20 seconds. The sender and receiver
of each message are chosen randomly. The buffer for each node is set to 100
messages (i.e, infinite buffer), unless otherwise specified. Each message has an
expiration time equal to 10 minutes. The execution interval of the epidemic
spreading procedure (presented in the box Program 2) is 10 seconds. The expi-
ration time (i.e., the value of time) is equal to 10 minutes. Therefore, the number
of rounds is 60.
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The movements of the hosts are generated by using a Random Way-Point
mobility model [6]; every host moves at a speed that is randomly generated by
using a uniform distribution. The range of the possible speeds is [1, 6]m/s. We
selected this mobility model, since as discussed in [15], its emergent topology
has an exponential structures, with Poisson-like distributions. Therefore, in this
scenario, the properties of the network can be studied with a good approximation
by assuming a homogeneous networks model. The approximation effect is due
to the fact that at any instant in time, the emergent structure is not purely
homogeneous. The accuracy of the approximation increases as the density of
population increases, since, considering the finite and limited simulated time,
we obtain a scenario characterised by a time series of degree of connectivity
values characterised by lower variance. Moreover, the so-called border effects,
due to the hosts that moves at the boundaries of the simulated scenarios, have
less influence as the density of population increases. This also means that as the
number of failures in the system increases, the accuracy of the model decreases.
In fact, considering uniformly randomly distributed failures, a scenario composed
of 32 nodes can be used to model the case of a scenario with an initial number
of 64 nodes, where half of them have failed.

Figure 1.a shows the distribution of the degree of connectivity for each node
in the simulated scenarios composed of different numbers of hosts. The values
of the average degree of connectivity for the scenarios composed of 32, 64, 96
and 128 hosts are respectively 5.8, 11.21, 16.41 and 21.67 (average approximated
values).

5.2 Analysis of Simulation Results

In this subsection we will analyse the results of our simulations, discussing the
performance of the proposed techniques. We will study the variations of some
performance indicators, such as the delivery ratio and the number of messages
sent as functions of the density of hosts (i.e., the number of the hosts in the
simulation area), considering different buffer size (and consequently different
removal rates).

Figure 1.b shows a comparison with the estimated epidemic spreading (i.e.,
the number of infectives I(t∗)) and the data obtained from the simulation of
a mobile scenario composed of 128 nodes, with t∗ = 10min and γ = 0. It is
interesting to note that the values of the theoretical curve are higher than the
experimental ones. This is due to the fact that the degree of connectivity is not
perfectly homogeneous in the simulated scenarios. For example, if a message is
sent by a host that has a degree of connectivity k > 〈k〉, the value of β will be
lower than the infectivity associated to the average degree of connectivity 〈k〉5.

Figure 2.a and 2.b show the delivery ratio in terms of population density, for
the case of a desired reliability equal to 100 and 50, respectively, with t∗ = 10min

5 From a practical point of view, in order to cope with this issue, it is sufficient to
increase β, for example by adding a correction equal to a percentage of the value
calculated by using the theoretical model. However, for illustration purposes, in the
simulations presented in the remainder of this paper, we used values of β derived
directly from the model presented in Section 2 without corrections.
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Fig. 1. (a) Distribution of the degree of connectivity in the simulated mobile scenar-
ios. (b) Comparison between epidemics model curve and simulation data of infection
spreading in the 128 hosts scenario with desired reliability equal to 100, t∗ = 10min
and γ = 0.

and γ = 0. The obtained delivery ratios are really close to the values expected
from our model analysis. Also in this case, the better approximation of the
assumption of homogeneous network, obtained when the density of population
increases, leads to better results (i.e., a more accurate estimation) for the case
of 128 nodes. Figure 3.a and 3.b show the number of messages as function of
population density. The curve trend can be approximated as O(N). This confirms
the analytical results presented in Section 2.3. The number of replicas per host
per message are plotted in Figure 4.a and 4.b. These diagrams illustrate the
scalability of our approach, since the number of replicas can be approximated as
a linear function of the number of hosts.

The influence of the buffer size is presented in Figure 5.a and Figure 5.b. The
first shows the comparison between the cases of infinite and limited (with a size
equal to 20) buffers. The effect of the non perfect network homogeneity is present
also here and is more evident for the scenarios composed of a lower number of
hosts. In fact, if the actual degree of connectivity is higher than the assumed 〈k〉
the probability of deletion of messages from the buffer increases. In this case, the
assumptions at the basis of the model in (3) are not valid. In order to cope with
the errors due to the approximation of assuming purely homogeneous networks,
it may be necessary to overestimate the removal rate. Figure 5.b shows that the
number of messages is greater than in the case of infinite buffers. In fact, an
increased infectivity is needed in order to spread the messages also in presence
of the removal phenomena, due to the limited buffer size.

6 Related Work and Discussion

In this section, we compare our solution with existing work, discussing possible
extensions and applications of the proposed model (for example by relaxing
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Fig. 3. Number of messages Vs population density with t∗ = 10min and γ = 0: (a)
case with desired reliability equal to 100. (b) case with desired reliability equal to 50.

the assumption of homogeneous networks) and outlining our current research
directions.

6.1 Comparison with the State of the Art

The seminal paper on the application of epidemic techniques in distributed sys-
tem design is [8], where these algorithms are used to maintain consistency in
replicated databases. In the past five years many researchers, both in the dis-
tributed systems and theoretical physics communities, have showed great in-
terests towards the study of epidemic spreading models in networks. A general
introduction to epidemic algorithms for information dissemination in distributed
systems can be found in [11]. Much work addressing different faces of the prob-
lem have been proposed, including the remarkable contributions presented in [4,
19, 10, 12, 17]. In general in these works, the authors consider the structure of
the underlying network topology only marginally, or from empirical and experi-
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Fig. 4. Number of replicas per host per message Vs population density with t∗ = 10min
and γ = 0: (a) Case with expected reliability equal to 100. (b) Case with expected
reliability equal to 50.

mental perspectives. A notable exception is [19], where the authors discuss the
application of the Harari graphs to the design of protocols for broadcasting.

In [4] the authors propose the so-called bimodal multicast based on the ex-
ploitation of epidemic techniques to deal with possible failures in the system.
They briefly analyse the exploitation of a particular network topology (more
specifically, a random structure topology) only as a possible and future refine-
ment of the model. It is interesting to note that the bimodal behaviour of the
algorithm is an emergent property typical of all percolation-like phenomena [25].
The authors derive the bimodal probability distribution by using an experimen-
tal methodology. Recently, Ganesh et alii in [14] discuss the effect of the network
topology on the diffusion of epidemics in networks from a theoretical point of
view by using a model based on Markov processes.

With respect to these works, the novelty of this paper resides in the evaluation
of the structure of the network by using accurate models to control and tune the
dissemination process according to a desired reliability. We also underline that
the design of our system is based on theoretical results confirmed by experimental
evidence, whereas in some the existing works, mathematical models are only used
to understand the emergent behaviour of the system a posteriori. Moreover, up
to our knowledge, this work can be considered the first concrete application of
the recent results on epidemics spreading in complex networks [23, 21, 3].

As far as mobile systems are concerned, a first study of the possible appli-
cation of epidemic techniques in MANETs is presented in [26] by Vahdat and
Becker. Many refinements of this approach have been proposed. A study of the
information dissemination based on epidemic models in mobile ad hoc networks
is presented in [18]. However, the authors discuss only a theoretical framework,
without proposing concrete implementation of the model. Moreover, they do not
take into account the influence of the structure of the network in the dissemina-
tion process. We believe that these epidemic techniques should be applied only
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in the cases where useful context information cannot be inferred. In another
work [20], we have in fact applied prediction techniques to adapt and to opti-
mise the communication mechanism by evaluating the evolution of the mobile
scenarios. In other words, only if it is not possible to extract any useful context
information and therefore make reasonable predictions, we will exploit epidemic
dissemination. We plan to integrate both algorithms in a middleware platform
that relies on both delivery mechanisms and that is able to select automatically
one of them according to the characteristics of the network.

Some interesting studies have been recently carried out on the connectivity of
ad hoc networks with respect to complex networks theory; for example, Glauche
et alii in [15] discuss some emerging network properties for different mobility
models, using percolation theory [25]; that is, an application of complex net-
works theory derived by the investigation of physical phenomena such as phase
transitions in molecular lattices. However, there are no available studies on the
emerging structure of real mobile ad hoc networks.

As discussed, our approach is applicable to general distributed systems case
studies. With respect to peer-to-peer systems, a random overlay network needs
to be built by selecting a subset of hosts in a pure random way in order to be
able to apply our approach. This can be done for instance by exploiting the peer
sampling service presented in [16] by Jelasity et alii. The authors propose the
primitive getPeer() to retrieve a peer in the system with a random uniform
probability. By using this service, a list of randomly selected nodes can be built.
Therefore, assuming that each host holds a set of the same size (or lists with
different sizes, but contained in a limited range), the techniques proposed in this
paper can be applied to tune the information dissemination among the peers.
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6.2 Relaxing the Assumption of Homogeneous Networks

The results and the solutions discussed in this paper rely on the assumption of
homogeneous networks. We now discuss the proposed approach can be extended
to the general case of heterogeneous networks. For heterogeneous networks the
approximation k ≈ 〈k〉 is not valid. However, the same probabilistic communi-
cation primitives introduced in Section 4 could be used, with a different seman-
tics; This relies on the following observations: given k fluctuating in the range
[kMIN , kMAX ], we observe that for a value of the infectivity corresponding to
k = kMIN , the obtained spreading of the infection I(t∗, kMIN ) will satisfy the
following property:

(15) I(t∗, k) > I(t∗, kMIN ) ∀k ∈]kMIN , kMAX ]

In other words, if kMIN is selected in the calculation of the value of the infectivity,
the value of Reliability can be considered approximately as a guaranteed lower
bound of the reliability level. The value of kMIN can be set by the user in peer-to-
peer systems or dynamically retrieved and set by the middleware by monitoring
the connectivity of the host in mobile systems. We plan to investigate these
adaptive mechanisms further in the future.

6.3 Towards New Design Principles for Distributed Systems

Many recent theoretical results in complex networks can be exploited for the de-
sign of the next generation distributed systems in order to handle the complexity
and to study and improve their performance. The solution presented in this pa-
per has been developed pursuing this vision. We plan to analyse and evaluate
the application of these techniques to the design of other types of distributed
systems, starting from large-scale peer-to-peer systems. We also plan to exploit
the middleware primitives presented in this paper to design publish/subscribe
systems that rely on precise network structures.

With respect to the reliability issues, we believe that effective and efficient
algorithms and protocols can be designed by evaluating the connectivity prop-
erties of the networks. This is extremely interesting in the case of peer-to-peer
networks that rely on the so-called super-nodes. As discussed in Section 2, we
plan to use more refined models to apply the approach presented to the design
of systems able to adapt to transient and permanent failures of nodes, especially
of those hosts that provide key functionalities (such as servers in client-server
architectures or super-nodes in peer-to-peer environments). This can be done,
for example, by considering models that describe the dynamics in populations
composed of various classes of individuals with different removal rates [2] and
heterogeneous degrees of connectivity.

Finally, even if adaptive mechanisms may be very complex, they should re-
main transparent to application developers. By means of a middleware layer, it
is possible to preserve the principle of transparency and a sufficiently high level
abstraction. However, we believe that, even if adaptive mechanisms should be,
in a sense, hidden, developers should be able to tune them. Therefore, the gen-
eral problem of the design of a middleware interface that allows developers to
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modify the behaviour of the system according to their application requirements
is a fundamental aspect that needs to be investigated further.

7 Concluding Remarks

In this paper, we have introduced middleware primitives for probabilistic com-
munication that relies on optimised epidemic-style techniques for information
dissemination in distributed systems. Our approach is heavily based on recent
results of complex networks theory. Its novelty resides in the evaluation of the
structure of the underlying network for the automatic tuning of the dissemi-
nation process. With respect to unicast communication, we have showed that
protocols that statistically ensure the desired reliability level for the case of ho-
mogeneous networks can be designed. We have also showed that these results
may be applied to the case of anycast and multicast communication to tune and
optimise the replication process. We have evaluated our approach analysing the
application of these techniques to the case of mobile ad hoc systems, a specific
subset of distributed systems. Finally, we have presented a possible generalisa-
tion of the model discussing the relaxation of the assumption of homogeneous
networks.
Acknowledgements The authors are grateful to Karen Page and Damon Wis-
chik for their useful suggestions and comments about the mathematical formal-
isation and analysis of the system.
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