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ABSTRACT
Mobile sensing technologies and machine learning techniques have
been successfully exploited to build effective systems for mental
health monitoring and intervention. Various approaches have re-
cently been proposed to effectively exploit contextual information
such as mobility, communication and mobile usage patterns for
quantifying users’ emotional states and wellbeing. In particular, it
has been shown that location information collected by means of
smartphones can be successfully used to monitor and predict de-
pression levels, as measured by means of standard scores such as
PHQ-8.

In this paper, we investigate the design of novel digital biomarkers
based on the fine-grained characterization of the mobility patterns
of a user, also considering the temporal dimension of their move-
ments (e.g., sequence of places visited by them). We show that the
proposed biomarkers have a statistically significant association with
emotional states. We also demonstrate that emotional states have a
stronger relationship with mobility patterns of weekdays compared
to all days of a week. Finally, we discuss the challenges in using
these biomarkers in the implementation of “emotion-aware” systems
for digital health.

Keywords
Digital Biomarkers; Mobile Sensing; Mobility Analysis; Anticipa-
tory Computing.

1. INTRODUCTION
Mobile phones today have become the most ubiquitous personal

computing devices on the planet. These devices have transformed
over a period of time from merely communication tools to smart
and highly personal devices that are able to assist us in a variety of
day-to-day situations. Besides being an indispensable part of our
daily life and pervasive in nature, mobile phones come equipped
with a plethora of sophisticated sensors with the capability to capture
our physical contextual information such as location, movement,
audio environment, proximity with other objects, collocation with
other devices and many others [11]. Recent studies have shown the
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potential of exploiting mobile sensing data to learn and, potentially,
predict the user’s behavioral patterns such as physical activity [3]
and mobile phone interaction [10, 8]. Moreover, mobile sensing data
have been used to understand and predict mood [13, 7], well-being
and mental health conditions such as depression [1, 2, 16, 21, 9].

Whilst sounding simple, understanding users’ emotional states
with respect to their physical contextual information is a complex
task. Likamwa et al. proposed the use of mobile sensing and
interaction logs (such as SMS, email, phone call, application usage,
web browsing, and location) for predicting users’ daily average
mood [7]. In [20] Servia et al. present a longitudinal study based on
data collected by means of a smartphone application investigating
the relation between user’s activity and sociability and a variety
of psychological dimensions, such as perception of health, life
satisfaction, and connectedness.

All of these studies show the potential of using mobile sensor
data for inferring emotional states of users in real-time. In particular,
in [2] Canzian et al. present an initial investigation of the possibility
of using mobility traces for inferring users’ depressive states, show-
ing that indeed it is possible to use statistical measures of mobility
in order to predict the mental health PHQ-8 depression score [6]
of an individual. Starting from this work, we believe that there is
a tremendous potential in crafting more refined and fine-grained
digital biomarkers based on movement data.

In this paper, we propose a variety of novel digital biomarkers
to capture users’ daily mobility behavior and demonstrate the asso-
ciation of these biomarkers with their emotional states (including
stress, happiness and activeness levels). Our purpose is to examine
the predictability of users’ emotional states through the analysis of
mobility data. In order to test our hypotheses, we developed and
deployed an application called MyTraces (Figure 1) that uses an
experience sampling method (ESM) approach to collect users’ emo-
tional state levels reported by them during different times of the day
and continuously logs sensor data. More specifically, the application
collects information about three emotional states including active-
ness, happiness and stress levels on a 5-point Likert scale as well
as different aspects of phone interaction and contextual information
(such as location and physical activity).

The key contributions of this paper can be summarized as follows:

• we investigate the design of novel digital biomarkers to char-
acterize user’s mobility behavior using GPS traces collected
by means of smartphones;

• we demonstrate that these novel digital biomarkers are associ-
ated with emotional states of the individuals, showing their
potential exploitation for predicting their emotional states
more accurately;
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• finally, we also present a temporal analysis of the mobility
patterns of users and their variations over different days of the
week and their impact on the use of the proposed biomarkers.

In general, we believe that the results presented in this work
represent an important step forward in understanding how sensor
data, and in particular mobility information, can effectively be used
for modelling and inferring human behavior and emotional states in
a passive way and at a scale.

2. DATA COLLECTION

2.1 Overview
In order to investigate the relationship between emotional states

and the mobility patterns of users, we conducted an in-the-wild study.
More specifically, we developed an Android app called MyTraces
(shown in Figure 1) that runs in the background to unobtrusively
and continuously collect users’ mobile phone interaction logs and
context information (such as location and physical activity). Note
that in this paper we analyze only mobility data and the analysis of
other collected data features is not presented in this paper. Moreover,
the application samples GPS data in an adaptive sensing fashion
using the mechanisms described in [2].

To acquire information about users’ emotional states (activeness,
happiness and stress level) throughout the day, we rely on the expe-
rience sampling method (ESM). As shown in Figure 1.b users can
register their emotional states through a sliding bar. This bar uses
a 5 point-based Likert scale where 1 indicates the lowest level and
5 the highest level. Every day a questionnaire is triggered once at
a randomly selected time inside a 3-hour time window. We used 4
3-hour time windows between 8.00 am and 11.00 pm (in the local
time zone of the user). We chose this time window so that the partic-
ipants do not feel annoyed by being asked to respond to the surveys
early in the morning and late at night. In case a questionnaire is
dismissed or not responded to within 30 minutes from its arrival
time, the application triggers another alert after 30 minutes.

Since the higher values of activeness and happiness levels indicate
a positive emotion, we measured the stress level according to a
negative scale that means lower value would indicate high level
of stress. By doing that, we make the scale of all three indicators
consistent (i.e., the lower values refer to negative emotion and higher
values to the positive emotion). Therefore, we reverse the scale by
subtracting each response value from 6. So, if for example the
response is 5 (i.e., very low stress), we subtract it from 6 to rescale
it to 1. Thus, with the reversed scale the lower value will refer to
lower stress and the higher value would indicate higher stress.

2.2 Recruitment of the Participants and Ethics
The MyTraces application was published on Google Play Store

and has been available to the general public for free since 4th Jan-
uary 2016. It was advertised through different channels including
academic mailing lists, Twitter, Facebook and Reddit. In order to
attract more participants for our study, we committed to give in-
centives to the participants for replying to the questionnaires for a
minimum of 30 days. We committed to select (through a lottery) one
winner of a Moto 360 Smartwatch and 20 winners of an Amazon
voucher.

In order to ensure privacy compliance, the MyTraces application
shows a list of information that is collected and asks for the user’s
consent. Additionally, the study was performed in accordance with
our institution’s ethical research procedure and the consent form
itself for the data collection was reviewed by our institution’s Ethics
Review Board.

(a) (b)

Figure 1: MyTraces application: (a) main screen, (b) mood
questionnaire.

2.3 Dataset
In this study we consider the data collected from 4th January

2016 to 1st July 2016. In this period the application was installed
by 104 users. However, many users did not actively respond to the
mood questionnaires and some uninstalled the application after a
few days. Therefore, we selected a subset of the data for the analysis
by considering only the users who ran the application and responded
to questionnaires for at least 21 days in order to have a sufficiently
large sample that can be statistically significant. Consequently, we
obtained a set of 22 users who satisfied these constraints. Note
that we do not have information about the demographics of these
participants because this information was not collected during the
study for privacy reasons.

2.4 Emotional States
Most of the previous studies [13, 7] have considered the Circum-

plex mood model with two dimensions as valence and arousal [14].
However, as discussed in [17], Schimmack and Rainer proposed
that the arousal state can be split into two dimensions: tense arousal
and energetic arousal. The authors justified this split with the fact
that the energetic arousal is influenced by a circadian rhythm (i.e., it
corresponds to activity in brain cells that regulate organisms’ sleep-
wake cycle), whereas tense arousal does not show a similar circadian
rhythm. Therefore, in our study we split “arousal” into tense arousal
(stressed-relaxed) and energetic arousal (sleepy-active).

Consequently, we consider three aspects of emotional states that
are captured during the day:

• activeness: a state of being aroused and physiological readi-
ness to respond [12];

• happiness: a state of positiveness and joy that is derived from
external and momentary pleasures [18];

• stress: a negative state of being under high mental pres-
sure [19].

The levels of these emotional states are computed on a 5 point-
based Likert scale, where 1 indicates the lowest level and 5 the
highest level.
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Figure 2: Visualization of spatial coverage by convex hull metric
with a user’s mobility data for a day.

3. MOBILITY-BASED BIOMARKERS
We now introduce five mobility-based biomarkers (i.e., mobil-

ity metrics) capturing some key characteristics of users’ mobility
patterns. In order to compute these metrics we rely on the location
data collected passively through the MyTraces app (discussed in the
previous section). These digital biomarkers represent the basis of
our correlation analysis that we will present in the following section.
All metrics are computed for each user on a daily basis.

3.1 Spatial Coverage by Tiles Approximation
This metric indicates the places (i.e., tiles) visited by a user. In

order to compute this we first group location points into square tiles
of each side as t

length

. We then provide unique identifier to each tile
and map all location points to their matching tile identifiers. Finally,
for each user we compute the number of unique tiles visited in a
day by finding the count of unique tile identifiers for that day. It is
worth noting that we optimize the value of t

length

2 [50,100] with
a step of 50 (meters). This optimization is performed based on the
correlations with each emotional states. It is worth noting that in this
paper we considered squared areas, however, different shapes might
be considered. We plan to investigate different types of shapes as
planned future work.

3.2 Spatial Coverage by Convex Hull Approx-
imation

This metric represents the spatial area covered by the user. We use
the convex hull algorithm (devised by Ronald Graham [5]) to find
the smallest Euclidean space that contains the given set of location
points. In Figure 2 we show the visualization of the spatial coverage

by convex hull with a user’s mobility data for a day.

3.3 Tiles Sequence
This metric indicates the similarity between the sequence of tiles

visited in the current and previous day. In order to compute the
similarity between these sequences we use the string-edit distance
that gives us the minimum number of insertions, deletions, and
substitutions required to transform one string into the other [15].
In our case tile identifiers are used as characters to form strings
representing the sequences of tiles visited in two days. In Figure 3
we show an example of computing the difference between two tile
sequences. It is worth noting that we optimize the value of tile sides
(i.e., t

length

) as t

length

2 [50,100] with a step of 50 (meters) and

T1 T1 T1 T3 T5 T5 T5 T2 T2 T2 T1 T1

T1 T1 T1 T5 T5 T5 T2 T2 T2 T1 T1 T3

Sequence 1

Sequence 2

Insert T3 Delete T3

Figure 3: An example to demonstrate the process of computing
the difference between two tile sequences. Here, we use tile
sequences of length 12 meters due to space limitations. In this
case, the sequence difference will be 2 as we need to (i) insert
T3 at fourth position; and (ii) delete T3 from last position.

the optimization is performed based on the correlations with each
emotional states. In order to compute a sequence of tiles we need to
transform the location data into continuous time series of locations
at a consistent interval of 10 minutes. In theory it is possible to
optimize both tile size and sampling rate. We plan to explore the
selection of the sampling interval as future work.

3.4 Place Sequence
This metric indicates the similarity between the sequence of

places visited in the current and previous day. This metric is com-
puted in the same way as tile sequence metric. However, the tile
sequence is replaced with the sequence of place identifiers. Here,
place identifiers indicates unique significant places (i.e, clusters of
locations visited by a user). To compute these significant places
we firstly discard the location samples with more than 50 meters
accuracy so that the estimated location clusters are of better quality.
We then find the location samples that were collected while users
were moving and we also discard them. So we use only location
points where users stopped. In order to infer such location points,
we compute the speed of the user by using the distance and the
time between the last and the current location points. If the speed is
less than a certain threshold (i.e., 5 km per hour) we consider that
location reading was collected when the user was not moving (i.e.,
stopped). Now, we iterate over all remaining location samples and
for each location point we create a new cluster only if the distance of
this location from the centroid of each existing cluster is more than
50 meters. Otherwise, we add this location to the corresponding
cluster and update its centroid. Finally, we consider all centroids as
significant places.

3.5 Displacement Entropy
We construct this metric to capture the level of predictability in the

daily movement patterns of a user. In order to compute this metric
we first create a time series of displacements at a time interval
of t

window

(i.e., distance travelled by the user in continuous time
windows of t

window

during the day). This sequence of displacement
values for a day is used to compute the Shannon entropy. It is
worth noting that we find the optimal value of t

window

2 [10,90]
with a step of 10 (minutes) that results in the best correlation of the
displacement entropy with each emotional states.
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Figure 4: Association between digital biomarkers and average
daily emotional states by considering all days of a week.
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Figure 5: Association between digital biomarkers and average
daily emotional states by considering only weekdays.

4. METHODOLOGY
In this section we present our approach for analyzing the asso-

ciation between users’ emotional states and their mobility metrics
(presented in Section 3).

4.1 Computing Daily Average and Strongest
Emotional States

Since previous studies have shown that the average daily emo-
tional state scores do not has much variance, which indicates that
a strong deviation of motion at one instance of a day could not be
captured through the average score. For example, let us consider the
happiness scores of a day are reported as 1, 3, 3 and 4. Here, 1 indi-
cates that the user was very sad, but this information is unrevealed if
we take the average that will be 2.75 indicating the user’s happiness
score is close to neutral for the day. Furthermore, we believe that the
strong emotional state at a some moment of a day might have a big
impact on the mobility. Therefore, we compute the emotional states
in two ways (i.e., by taking the average and the strongest emotional
state of a day) in order to investigate the link between emotional
states and mobility patterns.

In order to compute the daily average emotional states, we take
the mean of all emotional states reported in a day. On the other
hand, we compute the strongest emotional state of a day by first
transforming the emotional states from the scale of 1 to 5 into -2
to 2 scale. We now take all emotional states reported in a day to
find which one has the highest absolute value and the corresponding
emotional state value is used as the strongest emotional state of the
day. For instance, if four reports of happiness are 1, 3, 3 and 4,
they are converted to -2, -1,-1 and 1, and we use -2 as the strongest
emotional state of the day. Finally, we merge all values in the range
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Figure 6: Association between digital biomarkers and strongest
(i.e., highest or lowest) emotional states of a day by considering
all days of a week.
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Figure 7: Association between digital biomarkers and strongest
(i.e., highest or lowest) emotional states of a day by considering
only weekdays.

of -1 to 1 in order to rescale the strongest emotional state of the day
into -1 to 1 scale.

4.2 Analysis for Weekdays and Entire Week
Since our routine for weekdays is different from weekends, we

believe that our mobility follow a specific routine during the week-
days but it follows an uncertain routine during weekends. This could
potentially be explained by the fact that we work during specific
hours on weekdays but weekends plans could vary. Due to this rea-
son, divergence in emotional states could reflect as the divergence
in mobility patterns during weekdays. However, since people do
not follow a specific routine, the divergence in their mobility during
weekends could be associated with other variables rather than emo-
tional states. Due to the limited size of the data, we have data on
only 6 weekend days. So we could not directly compare differences
by analyzing weekdays and weekends data separately. Instead, in
order to understand this difference between, we can compare the
analysis by considering the data of weekdays and all days of a week
(i.e., weekdays and weekends included).

5. RESULTS
In this section we present the results of our analysis regarding

the potential association between users’ emotional states and the
mobility-based digital biomarkers discussed in the previous section.
In order to quantify this relationship, we compute the Spearman’s
rank-order correlation coefficients. The analysis is performed for
each user separately. We consider the absolute values of these coef-
ficients because we are interested in the strength of the relationships



between the variables. We then compute the average of these coef-
ficient values. We rely on Fisher’s method [4] for combining the
p-values of individual-based correlation analysis.

As discussed in Section 4, we compute emotional states in two
ways: (i) average emotional state of a day; and (ii) strongest emo-
tional state of a day. The results of the association between the
proposed digital biomarkers and the emotional states computed in
both ways are presented below.

5.1 Association with Daily Average Emotional
States

We first present the results for the association between the digital
biomarkers and the average emotional states. In order to compare
the difference in the biomarkers effectiveness during different days
of the week, we perform this analysis in two ways: (i) by using
the data of all days of a week; and (ii) by using the data of only
weekdays. The results of these analyses are presented in Figure 4
and Figure 5.

The results demonstrate that all biomarkers have a statistically
significant correlation (r 2 [0.3,0.5] with p < 0.05) with average
emotional states. However, our biomarkers outperform all basic
mobility features that are used in previous studies (for example,
in [2]). At the same time, some of our biomarkers such as spatial
coverage by tile approximation, tile sequence, and displacement
entropy always show a very strong association (r 2 [0.4,0.5]), which
is consistently stronger than previously used feature that obtain the
r 2 [0.2,0.4].

Moreover, the comparison between the results obtained consid-
ering the data of all days of a week and only weekdays indicates
that biomarkers built on weekdays data shows a stronger correla-
tion. Since people might not have a specific routine on weekends,
biomarkers calculated using weekends data are more noisy and,
consequently, the correlation is lower.

5.2 Association with Daily Strongest Emotional
States

We first present the results concerning the association between
the digital biomarkers and the strongest emotional states of each day.
As discussed earlier, we perform this analysis in two ways: (i) by
using the data of all days of a week; and (ii) by using the data of
only weekdays, in order to compare the difference in the biomarkers’
effectiveness during different days of a week. The results of these
analyses are presented in Figure 6 and Figure 7.

The results demonstrate that all biomarkers have more marked
association with strongest emotional states compared to average
ones. At the same time, we observe a statistically significant cor-
relation (r 2 [0.3,0.6] with p < 0.05) of emotional states with our
biomarkers, which is much greater than the results of all basic mobil-
ity features (i.e., r 2 [0.2,0.5]). Moreover, we note that the spatial

coverage by convex hull biomarker shows a very strong association
(r = 0.52) with happiness.

On the other hand, the comparison between the results with the
data of all days of a week and only weekdays indicates that biomark-
ers built on weekdays data shows a stronger correlation, as also
observed for the case of the average emotional states discussed
above.

6. LIMITATIONS
Our results show the effectiveness of the proposed biomarkers

for capturing users’ mobility behavior and to infer their emotional
states. In particular, we have showed that more refined mobility-
based biomarkers, which exploit both the temporal and the spatial
dimensions, outperform those presented in [2].

The present work has also some limitations. We believe that there
are some limitations in our study that must be overcome to deploy
our biomarkers-based system for inferring in-the-wild emotional
states. First, there is a need of developing biomarkers that take
into consideration the variability of behavior over different days of
the week. One possibility is to train biomarkers for specific days,
but this will require a longer training period and this might not
be feasible in practice. Second, this study was performed with a
small number of participants and over a short duration of time. It is
important to test these results with a larger number of participants
with different demographics and over a longer period of time, also
possibly in various periods of the year. Finally, almost all previous
studies are based on a first phase of data collection and then on a
second phase focused on the offline analysis. We believe that in
order to further validate the robustness and ecological validity of the
biomarkers or models based on these biomarkers, there is a need to
perform in-the-wild evaluations of these techniques.

7. CONCLUSIONS
In this paper, we have proposed a series of novel fine-grained

mobility-based spatio-temporal biomarkers that can be used to effec-
tively capture users’ daily mobility behavior. We have evaluated the
proposed biomarkers and we have showed they have a statistically
significant correlation with users’ emotional states, collected by
means of a ESM mobile application and provide better performance
in terms of strength of the association with respect to the state of the
art. Additionally, we have noted that biomarkers built on weekdays
data shows a stronger correlation with the emotional states taken into
consideration compared to biomarkers built on the data of all days
of a week. Finally, we have also demonstrated that daily strongest
emotional states are strongly correlated with digital biomarkers com-
pared to daily average emotional states. Our future research agenda
includes the design of novel biomarkers based on other contextual
modalities and the use these biomarkers for predicting individuals’
cognitive context.
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