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Human mobility is one of the key factors at the basis of the spreading of diseases in a popula-
tion. Containment strategies are usually devised on movement scenarios based on coarse-grained
assumptions. Mobility phone data provide a unique opportunity for building models and defining
strategies based on very precise information about the movement of people in a region or in a coun-
try. Another very important aspect is the underlying social structure of a population, which might
play a fundamental role in devising information campaigns to promote vaccination and preventive
measures, especially in countries with a strong family (or tribal) structure.

In this paper we analyze a large-scale dataset describing the mobility and the call patterns of
a large number of individuals in Ivory Coast. We present a model that describes how diseases
spread across the country by exploiting mobility patterns of people extracted from the available
data. Then, we simulate several epidemics scenarios and we evaluate mechanisms to contain the
epidemic spreading of diseases, based on the information about people mobility and social ties, also
gathered from the phone call data. More specifically, we find that restricting mobility does not delay
the occurrence of an endemic state and that an information campaign based on one-to-one phone
conversations among members of social groups might be an effective countermeasure.

I. INTRODUCTION

Health and well-being of populations are heavily in-
fluenced by their behaviour. The impact of the habits
and local customs, including patterns of interactions and
mobility at urban and regional scales, on health issues
is remarkable [1]. The diffusion of mobile technology
we are experiencing nowadays gives scholars an unprece-
dented opportunity to study massive data that describe
human behavior [2]. An increasing number of people
carries smart mobile phones, equipped with many sen-
sors and connected to the Internet, for the whole day [3].
Data coming from a large number of people can describe
trends in the macroscopic behavior of populations [4–6].
The results of the analysis of these trends can be directly
applied to a number of real-world scenarios, and, more
in general, to several applications where cultural and lo-
cal differences play a central role. Analyzing this kind of
data can provide invaluable help to support the decision-
making process, especially in critical situations. For this
reason, many public and private organizations are nowa-
days increasingly adopting a data-centric approach in
their decisional process [7]. We believe that this strat-
egy can be particularly useful in developing countries,
which might have a lacking infrastructure1.

Among the issues that developing countries are facing
today, healthcare is probably the most urgent [9]. In

1 We use the term “developing” to indicate countries that are as-
signed a low Human Development Index (HDI) by United Na-
tions Statistics Division. We are aware of the limitations of this
classification. As reported by UN, the designations “developed”
and “developing” are intended for statistical convenience and do
not necessarily express a judgment about the stage reached by a
particular country or area in the development process [8].

these countries the effectiveness of campaigns is often re-
duced due to low availability of data, inherent limits in
the infrastructure and difficult communication with the
citizens, who might live in vast and remote rural areas.
As a result, action plans are difficult to deliver. How-
ever, we believe that a data-centric approach can be an
innovative and effective way to address these issues.

In this paper, we focus on containment of epidemics.
We use movement data extracted from the registration
patterns in a cellular network to evaluate the influence
of human mobility on the spreading of diseases in a ge-
ographic area. In particular, we utilize this model to
investigate how infectious agents might spread to dis-
tant locations because of human movement in order to
identify optimal strategies that can be adopted to con-
trast the epidemics. We also evaluate how the collabo-
rative effort of the population can be crucial in critical
scenarios. For the reasons we mentioned before, in coun-
tries that are facing development challenges, vaccination
campaigns are often hard to advertise to the population.
Lack of communication and information is believed to be
among the main causes of failure for immunization cam-
paigns. The same applies to awareness campaigns that
try to promote prophylaxis procedures that reduce the
occurrence of contagion. However, in these cases, we ar-
gue that a collaborative effort leveraging individual social
ties can be effective in propagating effective information
(i.e., a sort of “immunizing information”) to a widespread
audience. Moreover, information received by people who
are socially close can have a higher chance of leading to
an actual action.

A large body of research has been conducted on models
that describe the diffusion of diseases, with a particular
recent interest on the role that human movement plays
in spreading infections in large geographic areas [10–12],
and also on the impact of human behavior on the spread-
ing itself [12, 13]. With respect to the state of the art,
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the main contributions of this paper can be summarized
as follows:

• We propose an epidemic model based on a net-
work of geographic metapopulations, which de-
scribes how people move between different geo-
graphic regions and spread the disease.

• We evaluate containment techniques based on the
restriction of mobility of the most central areas.
The centrality of the areas is extracted by building
a movement network between all the geographic ar-
eas based on the mobility patterns of the individu-
als.

• We extend the model with a competing informa-
tion spreading where distance contagion might take
place. In other words, we study the dynamics of the
system considering three characterizing aspects of
the problem: the disease epidemics, human mobil-
ity and information spreading. This epidemics rep-
resents the diffusion of information related to mea-
sures to prevent or to combat the diseases, such
as information about the ongoing vaccination and
prevention campaigns in a certain area or actions
that will help to limit spread of the infection, such
as boiling water or avoiding contacts with people
that are already ill.

• We evaluate the models by using the data provided
by the Orange “Data for Development” [14]. We
discuss the effectiveness of the containment strate-
gies and, in particular, for the information dissem-
ination strategy, we identify the degree of partici-
pation that is required to make it successful.

• We observe that restricting mobility by disallowing
any movement from and to a limited set of subpre-
fectures does not delay the occurrence of the en-
demic state in the rest of the country. We also find
that a collaborative effort of prevention information
spreading can be an effective countermeasure.

This paper is organized as follows. In Sec. II we briefly
describe the four different datasets provided by Orange
and we specify how they are used in the present study.
In Sec. III we introduce our two models for epidemics
and information spreading by taking into account hu-
man mobility and call patterns observed in Ivory Coast.
In Sec. IV we present the results obtained by simulating
several epidemics scenarios and evaluating mechanisms
to contain the epidemic spreading of diseases. Finally, in
Sec. V we summarize our main findings and we propose
how the present study can be improved if more detailed
data about mobility and calls will be available.

II. OVERVIEW OF THE DATASET

The data provided for the D4D challenge [14] consist
of four datasets (identified by the labels SET1, SET2,
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Figure 1: Logarithmic representation of the calls matrix (a)
and the mobility matrix (b). Null values are indicated using
the white color. For both matrices highest values are mostly
concentrated along the diagonal, showing that communication
and movement between sub-prefectures is highly uncommon.
However, the calls matrix is visibly denser than the mobility
matrix, confirming that phone contacts between different sub-
prefectures are more usual than movement.

SET3, SET4), containing information about user mobil-
ity and call patterns at various levels of granularity and
time duration. We will now discuss how these datasets
can be used to build a model which accounts for user
mobility and information spreading.

Two datasets contain information about mobility and
communication patterns at macroscopic level. More pre-
cisely:

• The SET1 dataset contains the number and the
duration of calls between pairs of cell phone tow-
ers, aggregated by hour. This dataset provides
macroscopic information about communication in
the country. We associate cell phone towers with
the sub-prefecture they are located in, by using the
supplied geographic position. Then, we evaluate
the probability of a call being established between
sub-prefectures i and j with:

cij =
Cij∑
k Cik

, (1)

where Cij is the number of phone calls initiated
from the sub-prefecture i and directed to the sub-
prefecture j, during the entire period of observa-
tion. The term at denominator indicates the to-
tal communication flux between every pair of sub-
prefectures and it is used to normalize the prob-
ability. Using these values we build a calls ma-
trix C, shown in Fig. 1(a). This matrix also shows
high values along the diagonal, but it is distinctly
denser, showing that calls between sub-prefectures
are more common than movement. The vertical
line at x = 60 identifies calls directed to the sub-
prefecture that contains the capital.

• The SET3 dataset contains the trajectories of
50,000 randomly-selected individuals, at a sub-
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Figure 2: Geographic network obtained from call logs (a) and mobility traces (b). Color is used to indicate the community
structure: nodes within the same community are represented with the same color.

prefecture level resolution, for five months.2 This
dataset can be used to estimate the probability that
an individual moves from the sub-prefecture i to the
sub-prefecture j:

mij =

∑
uMu

ij∑
k

∑
uMu

ik

, (2)

where Mu
ij is the number of times user u moves

from the sub-prefecture i to j. The numerator
counts how many times users who are in i move
to j; the denominator normalizes this number by
the total number of transitions from i to any sub-
prefecture k. Using these values we build a mobility
matrix M , shown in Fig. 1(b). By using this ma-
trix, we model human mobility in the country as a
Markov process [15]. We observe that the matrix
is quite sparse and the highest values are concen-
trated along the diagonal. As the representation
is in logarithmic scale, this demonstrates that the
movement between sub-prefectures is present, but
rather uncommon.

In Fig. 2(a) and Fig. 2(b) we show the geographic net-
works of calls and mobility, respectively. Nodes are

2 17 sub-prefectures do not have any cell phone towers and for this
reason do not appear in SET3. We discard these sub-prefectures
from our analysis, since their users will be considered as belong-
ing to nearby sub-prefectures.

positioned using the geographic locations of the sub-
prefecture they represent, and their color indicates the
community structure of the network based on [16].

The other two datasets provide microscopic informa-
tion about mobility and communication patterns between
individuals. Although we do not use them for the anal-
ysis in this paper, we now briefly outline how they could
be used:

• The SET2 dataset contains fine-grained individual
trajectories of 50,000 randomly sampled individu-
als over two-week periods. This dataset could be
used to estimate the number of potential connec-
tions that an individual might have in a certain
area, served by a cell phone tower.

• The SET4 dataset contains time-varying ego-
networks of 5,000 users, describing the network of
communication in time-slots of 2 weeks. If two
users are connected by a link in a time-slot, it
means that at least one call occurred during the
two weeks under consideration3. The ego-network
aggregated over the whole observation time, built
considering every link that is present at least once,

3 We have found that 1.31% of the total number of edges in ego-
networks connect pairs of users who are neither egos nor first-
level neighbors: therefore, we do not consider such edges in our
analysis.
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Figure 3: Distribution of friends for the ego-networks ag-
gregated over time. Error bars indicate statistical uncer-
tainty, while the shaded area represent 99% confidence in-
tervals around the observed value.

describes the number of people contacted by an
individual during the entire period. This dataset
could be used to estimate the number of potential
social connections that an individual might get in
touch with. The degree distribution of the aggre-
gate ego-network is shown in Fig. 3.

III. SPREADING MODELS

In this section we discuss two models: a model of dis-
ease spreading as a function of the mobility patterns of
individuals between different geographic areas inferred
from the cellular registration records and a model for in-
formation spreading among the same population, consid-
ering the social structure inferred from the call records.
In the following section, we will evaluate the models using
the data provided for the Orange Data for Development
challenge.

A. Epidemic Spreading and Mobility

We will now present a model that represents the evolu-
tion of an epidemic taking place on a network of metapop-
ulations. The aim of the model is to describe how the sys-
tem evolves under the action of two processes, contagion
and mobility. For this dataset, each metapopulation is
composed by the individuals located in a particular sub-
prefecture. Hence, the population is distributed in n dif-
ferent metapopulations, each having Ni[t] individuals at
time t. We make the simplifying assumption that there
are no deaths and births in the considered time window,
i.e., at each time t = 1, 2, . . . T the total population is
constant

∑n
i=1Ni[t] = N .

We assume that contagion happens inside each
metapopulation following a standard SIS model [17]. We
indicate the number of infected and susceptible individ-
uals at time t in a sub-prefecture i with Ii[t] and Si[t],
respectively. At each time t a person is either infected or
susceptible, therefore Ni[t] = Ii[t] + Si[t].

Simultaneously, individuals move through the
metapopulation network according to the mobility
matrix M of dimension n×n extracted from the cellular
traces. The generic element mij of the matrix represents
the probability that a person moves from the metapop-
ulation i to j, as described by Eq. 24. This matrix
describes how the state variables Ni[t] evolve over time:
Ni[t + 1] =

∑n
j=1mjiNi[t]. Under the assumption that

individuals inside the classes I and S move consistently
we can write the last relation also for the state variables
Ii[t] and Si[t]

5. The contagion-mobility combined system
can then be described by the following set of equations:

Ii[t+ 1] =

n∑
j=1

mji

[
Ij [t] + λ

Sj [t]

Nj [t]
Ij [t]− γIj [t]

]

Si[t+ 1] =

n∑
j=1

mji

[
Sj [t]− λ

Sj [t]

Nj [t]
Ij [t] + γIj [t]

]
,

for each sub-prefecture i = 1, 2, . . . , n, with λ being
the product of contact rate and contagion probability
and γ being the recovery rate. The formulae inside the
square brackets describe the evolution of n SIS models,
one for each metapopulation. They are multiplied for
the elements of the mobility matrix, which accounts for
individuals moving between metapopulations.

This analytical model describes the expected outcome
of a stochastic model where the following actions occur
at each time step:

1. Each infected person in the sub-prefecture j causes

the infection of new λ
Sj

Nj
individuals inside j. This

step is repeated for each sub-prefecture.

2. A new position i is assigned to each individual in
the sub-prefecture j according to the probability
density function [mj1,mj2, . . . ,mjn]. This step is
repeated for each sub-prefecture.

B. Information Spreading

The model we presented in the last section tries to re-
produce the spreading of a disease in a population where
individuals change locations over time. The aim of this

4 In general, this matrix can be time-varying, and it can be ad-
justed according to seasonal trends or real-time data at each step,
for example following estimates based on historical data. In par-
ticular, this matrix can be used to study the impact of policies
in real-time. However, in order to simplify the presentation, we
use a matrix not changing over time. The treatment can be gen-
eralized, also applying the recent theoretical results related to
time-varying networks [18, 19].

5 This assumption can also be relaxed when data about the dif-
ferent classes of individuals is available, i.e., when a matrix for
each class can be defined.
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Figure 4: State machines describing the state transitions of
a person with respect to the disease contagion (R=Resistant,
S=Susceptible and I=Infected) and with respect to the in-
formation spreading (U=unaware, A=aware), respectively. A
person starts in the susceptible and unaware states. We as-
sume that aware individuals spread the information and can-
not go back to the unaware state.

work is to analyze some scenarios and study the effec-
tiveness of some containment techniques. In particular,
as anticipated, we would like to investigate if a collabora-
tive effort of the population is able, in theory, to reduce
considerably the spread of the disease and what propor-
tions should it have to be effective. More precisely, the
population can disseminate information through personal
social ties immunizing, such as information about pre-
vention techniques, hygiene practises, advertisement of
nearby vaccination campaigns and in general any infor-
mation that can lead to a reduction of the number of
contagion events.

In order to take into consideration these aspects, we
now use a SIR model for each metapopulation, so that
each person either belongs to the susceptible (S), in-
fected (I) or resistant (R) category. At the same time,
another simultaneous epidemic happens on the network
of metapopulations, disseminating information that can
make individuals resistant to the disease. In fact, a
person also belongs to the category of unaware (U) or
aware (A) individuals, with respect to the immuniz-
ing information. More formally, we have that Ni[t] =
Ii[t] + Si[t] +Ri[t] = Ai[t] + Ui[t].

It is worth noting that this “immunizing epidemic”
goes beyond the boundaries of metapopulations (sub-
prefectures): in other words, it is a distance contagion.
It is also important to remark that the states “aware”
and “resistant” are substantially different. An unaware
person that receives the information (i.e. has an “infor-
mation contact”) becomes aware with rate ψ; since the
person is aware, he or she will start spreading the in-
formation as well. An infected person that receives the
information becomes immune with rate ω. Additionally,
individuals who have acquired immunity through infor-
mation can lose it with rate ξ. The transition rates be-
tween states are summarized in Fig. 4. The model can
be described by the following set of equations, specifying
how state vectors evolve over time:

Ii[t+ 1] =

n∑
j=1

mji

[
Ij [t] + λ

Sj [t]

Nj [t]
Ij [t]− γIj [t]

]

Si[t+ 1] =

n∑
j=1

mji

[
Sj [t] − λ

Sj [t]

Nj [t]
Ij [t] + γIj [t] + ξRj [t]+

− ωSj [t]
∑n
k=1 ckjAk[t]∑n
k=1 ckjNk[t]

]
Ri[t+ 1] =

n∑
j=1

mji

[
Rj [t]− ξRj [t] + ωSj [t]

∑n
k=1 ckjAk[t]∑n
k=1 ckjNk[t]

]

Ai[t+ 1] =

n∑
j=1

mji

[
Aj [t] + ψUj [t]

∑n
k=1 ckjAk[t]∑n
k=1 ckjNk[t]

]

Ui[t+ 1] =

n∑
j=1

mji

[
Uj [t] − ψUj [t]

∑n
k=1 ckjAk[t]∑n
k=1 ckjNk[t]

]
(3)

for every i = 1, 2, . . . , n. The fraction
∑n

k=1 ckjAk[t]∑n
k=1 ckjNk[t]

rep-

resents the probability that a call from an aware person
occurs in the metapopulation j. It models the distance-
contagion, and it is possible to verify that if the matrix
is identical (absence of contacts between populations) it
reduces to Ak[t]/Nk[t], falling back to a model where con-
tagion occurs only inside metapopulations.

This analytical model describes the expected value of
a stochastic model where the following actions occur at
each time step t:

1. Each infected person in the sub-prefecture j causes

λ
Sj

Nj
new individuals to get infected, inside j. This

step is repeated for each sub-prefecture.

2. Each unaware person in the sub-prefecture j be-

comes aware with probability ψ
∑n

k=1 ckjAk[t]∑n
k=1 ckjNk[t]

. This

step is repeated for each sub-prefecture.

3. Each person in the sub-prefecture j who is
susceptible, becomes resistant with probability

ω
∑n

k=1 ckjAk[t]∑n
k=1 ckjNk[t]

. This step is reapeated for each sub-

prefecture.

4. A new position i is assigned to each person in the
sub-prefecture j according to the probability den-
sity function [mj1,mj2, . . . ,mjn]. This step is re-
peated for each sub-prefecture.

IV. ANALYSIS

We initialize each scenario by allocating 22 mil-
lion individuals (the estimated population size of Ivory
Coast for July 2012 is 21,952,093 [20]) to different sub-
prefectures across the country, according to the data in
SET3. In each scenario we bootstrap the spreading pro-
cess by infecting a fraction of the population (0.1%) dis-
tributed across metapopulations according to different
criteria:
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Figure 5: Fraction of infected population at the stationary
state (left panel) and time required to reach the stationary
state (right panel), for different values of r0 and for different
initial conditions. Missing values in the curves mean that,
for the corresponding values, no stationary state is reached
during the period of observation.

• Uniform distribution: every sub-prefecture gets a
number of infected proportional to their popula-
tion, i.e., every sub-prefecture has the same fraction
of infected population.

• Random: a single sub-prefecture, chosen randomly,
is the origin of the infection.

• Centrality based: the sub-prefectures are ordered
by decreasing centrality values, then the first 1, 5
or 10 highest ranked sub-prefectures are chosen, as
shown in Table I.

We study the evolution of the epidemics for a period
of 6 months. We investigate multiple scenarios using the
analytical model considering a large set of ranges for the
key parameters. We conducted a series of Monte-Carlo
simulations for multiple sets of parameters, confirming
the validity of the analytical models presented in the pre-
vious section. In the following, we present results based
on these models.

A. No Countermeasures

We will firstly explore the evolution of the epidemics
in the case where no countermeasures are taken. In order

Betweeness Closeness Degree Eigenvalue
60 60 60 60
39 58 58 58
89 39 39 39
58 69 69 69
75 138 138 250
144 250 64 138
138 64 144 64
165 144 250 144
212 182 122 122
168 122 182 182

Table I: Highest ranked sub-prefectures, according to different
definitions of centrality. We observe that the sets of the top
10 sub-prefectures ordered by centrality are very similar.
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Figure 6: Fraction of infected population at the stationary
state (left panel) and time required to reach the stationary
state (right panel), for different values of r0 when the epi-
demic starts from a random sub-prefecture, and different lev-
els of geographic quarantine are applied. Missing values in the
curves mean that, for the corresponding values, no stationary
state is reached during the period of observation.

to analyze the evolution of the system more clearly, we
investigate two measures: the fraction of infected popu-
lation i∞ at the stationary state and the time required to
reach the stationary state τ . In Fig. 5 we plot their val-
ues versus r0 = λ

γ , which is the basic reproductive ratio

of a classic SIS model [17]. As a future work, we plan to
derive the analytical form of the basic reproductive ra-
tio of our models, which take into account mobility and
information spreading. We observe that for r0 = λ

γ < 1

there is no endemic state (i.e., the final fraction of in-
fected population is zero), whereas for r0 > 1 a non-null
fraction of population is infected. Values for r0 = 1 are
missing since no stationary state is reached within our
observation window. In other words, for this particular
scenario, experimental results show that the basic repro-
ductive ratio of our model is very close to r0; we expect
this to be a consequence of the low inter-subprefectures
mobility. We can also notice that the initial conditions
do not affect i∞ at all. Before the critical point (i.e.,
r0 = 1) the choice of the initial conditions has also no
impact on the delay time, whereas for r0 > 1 it slightly
affects the delay: epidemics that initially involves more
sub-prefectures are slightly faster than the others.

B. Geographic Quarantine

We now analyze the effects of curbing on the mobility
between sub-prefectures, i.e., forbidding all the incoming
and outgoing movement of a group of sub-prefectures.
In order to do so, we calculate the centrality values of
each sub-prefecture in the mobility matrix. We present
the results for eigenvalues centrality. As it is possible to
observe in Tab. I, the ranking based on other centralities
is very similar. Then, for the quarantine operations, we
select those with the highest centrality values. From a
practical point of view, this is achieved by simply chang-
ing the i−th row and column in the mobility matrix, so
that all the elements mij and mji are null, except for
the elements mii = 1. For these scenarios, we randomly
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Figure 7: Fraction of infected population at the stationary state (top row) and time required to reach the stationary state
(bottom row), for different values of r0 = λ

γ
(from left to right 1, 2, 4, 10, respectively). White spaces show that no stationary

state is reached during the period of observation.

choose a single sub-prefecture where the initial individu-
als are infected, and then we average i∞ and τ over all
runs. As shown in Fig. 6, the fraction of the infected
population is sensibly affected by this measure, as the
population inside the quarantined areas is protected from
contagion. However, contrary to the intuition, the delay
is not affected by the quarantine, even when the coun-
termeasures involves 10 sub-prefectures, which account
for almost half population. This suggests that such an
invasive, expensive and hard to enforce measure reduces
considerably the endemic size, but does not slow down
the disease spreading in the rest of the country. For this
reason, we now investigate a radically different approach
to protect the population.

C. Information Campaign (Social Immunization)

We now show how a collaborative information cam-
paign could help in contrasting the spread of the disease,
following the model we presented in the last section. We
initialize the scenario by distributing the immunizing in-
formation to 1% of the population, randomly chosen re-
gardless of their location. These people will be informed
and will be instructed to spread the information. In other
words, we assume that they will contact their social con-
nections, according to the call matrix.

In Fig. 7 we show the density plots describing i∞ and τ
for various values of r0 (, for a subset of scenarios where
ω = ψ, i.e., when the information that spreads among
the population has the same chance to immunize a per-
son and to involve the person in the spreading process.
This is consistent with a scenario where the same set of

people who become aware also become immunized by the
information they have received. Blank squares show that
a stationary state was not reached for the correspond-
ing set of parameters. The figure shows how contagious
(ω=ψ) the immunizing information has to be with re-
spect to how often people “forget” (ξ) in order to slow
down the disease considerably and to reduce the endemic
cases. When ω = ψ = 0 we fall back to the model with-
out information spreading, and the value of ξ does not
affect i∞ and τ . For ω = ψ > 0 and ξ = 0 the fraction
of infected population goes to zero in all cases, because
the number of people aware of the information does not
decrease, thus increasing the number of new immunized
individuals at each step. We can notice that even for low
values of participation ω and for information that gives
temporary immunization (ψ > 0), the final fraction of in-
fected individuals is considerably lower than in the case
where no countermeasures are taken.

In Figs. 8 and 9 we show the density plots for ω and ψ
when ξ is constant. In particular, we analyze the scenario
for ξ = 0 (Fig. 8), which represents for example a scenario
where the immunizing information is about vaccination
campaigns (individuals who have been administered vac-
cination do not lose immunity). For every combination of
parameters we have absence of endemic state even with
the highest considered value of r0. The two parameters
that represent how individuals are likely to get involved
both in the immunization and in the information spread-
ing (ω and ψ) seem to have the same impact on the delay
of the infection.

The value ξ = 0.5 (Fig. 9) describes the scenario when
the information is about a good practice (e.g., boiling
water, using mosquito nets, etc.), which loses its effec-
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Figure 8: Fraction of infected population at the stationary state (top row) and time required to reach the stationary state
(bottom row), for different combinations of λ

γ
(from left to right 1, 2, 4, 10, respectively) and ξ = 0. White spaces show that

no stationary state is reached during the period of observation.
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Figure 9: Fraction of infected population at the stationary state (top row) and time required to reach the stationary state
(bottom row), for different combinations of λ

γ
(from left to right 1, 2, 4, 10, respectively) and ξ = 0.5. White spaces show that

no stationary state is reached during the period of observation.

tiveness or it is stopped being used by a person with rate
ξ. For this case we can notice that the fraction of in-
fected population is independent from ψ, as rows in the
density plot are of the same color. This suggests that,
for this scenario, the rate at which people lose immunity
does not affect the size of the endemic state.

V. CONCLUSIONS

In this paper we have presented a model that describes
the spreading of disease in a population where individuals
move between geographic areas, extracted from cellular
network records. We have showed the evolution of the
disease and we have evaluated two types of countermea-
sures, namely the quarantine of central geographic areas
and a collaborative “viral” information campaign among
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the population, by inferring the underlying social struc-
ture from the call records.

Our future research agenda includes the investigation
of analytical aspects of the model, such as the derivation
of the critical reproductive ratio R0, i.e., the value that
corresponds to the transition between an endemic and an
endemic-free infection. Currently, the model is based on
the assumption of a static mobility matrix: our goal is
to refine the model by introducing time-dependent ma-
trices, also exploring the application of the recent the-
oretical results related to temporal networks. We also
plan to refine the model introducing specific contact rates
for each metapopulation, potentially based on more fine-
grained information about the number of encounters and

the number of calls of each individual, if available. Fi-
nally, we plan to explore hybrid countermeasures, such as
concurrent partial restrictions of mobility and targeted
information campaigns.
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