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ABSTRACT

Validation of mobile ad hoc network protocols relies al-
most exclusively on simulation. The value of the validation
is, therefore, highly dependent on how realistic the move-
ment models used in the simulations are. Since there is a
very limited number of available real traces in the public
domain, synthetic models for movement pattern genera-
tion must be used. However, most widely used models are
currently very simplistic, their focus being ease of imple-
mentation rather than soundness of foundation. As a con-
sequence, simulation results of protocols are often based
on randomly generated movement patterns and, therefore,
may differ considerably from those that can be obtained by
deploying the system in real scenarios.

Movement is strongly affected by the needs of humans to
socialise or cooperate, in one form or another. Fortunately,
humans are known to associate in particular ways that can
be mathematically modelled and that have been studied in
social sciences for years.

In this paper we propose a new mobility model founded
on social network theory. The model allows collections of
hosts to be grouped together in a way that is based on so-
cial relationships among the individuals. This grouping is
then mapped to a topographical space, with movements in-
fluenced by the strength of social ties that may also change
in time.

We have validated our model with real traces by showing
that the synthetic mobility traces are a very good approx-
imation of human movement patterns. We have also run
simulations of AODV and DSR routing protocols on the
mobility model and show how the message delivery ratio is
affected by this type of mobility.

1. INTRODUCTION

The definition of realistic mobility models is one of the
most critical and, at the same time, difficult aspects of
the simulation of applications and systems designed for
mobile environments. Currently, there are very few and
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very recent public data banks capturing node movement
in real large-scale mobile ad hoc environments. For ex-
ample, researchers at Intel Research Laboratory in Cam-
bridge and the University of Cambridge distributed Blue-
tooth purpose-made devices to people, in order to collect
data about human movements and to study the charac-
teristics of the co-location patterns among people. These
experiments were firstly conducted among students and re-
searchers in Cambridge [6] and then among the participants
of InfoCom 2005 [16]. Other similar projects are the Wire-
less Topology Discovery project at the University of Cal-
ifornia at San Diego [24] and the campus-wide WaveLan
traffic measurement and analysis exercises that have been
carried out at Dartmouth College [12]. At this institution,
a project with the aim of creating a repository of publicly
available traces for the mobile networking community has
also been started [21].

Until now, real movement traces have been rarely used
for evaluation and testing of protocols and systems for wire-
less networks, with the only exception of [39] and [15], in
which the authors used, respectively, the movement traces
collected from a campus scenario and direct empirical ob-
servations of the movements of pedestrians in downtown
Osaka as a basis of the design of their models.

In general, synthetic models have been largely preferred [5].
The reasons of this choice are many. First of all, as men-
tioned, the available data are limited. Second, these traces
are related to very specific scenarios and their validity is
difficult to generalize. However, as we will discuss later in
the paper, these data show surprising common statistical
characteristics, such as the same distribution of the dura-
tion of the contacts and inter-contacts intervals. Third, the
available traces do not allow for sensitivity analysis of the
performance of the algorithm, since the values of the pa-
rameters that characterize the simulation scenarios, such
as the distribution of the speed or the density of the hosts,
cannot be varied. Finally, in some cases, it may be im-
portant to have a mathematical model that underlines the
movement of the hosts in simulations, in order to study its
impact on the design of protocols and systems.

Many mobility models for the generation of synthetic
traces have been presented (a survey can be found in [5]).
The most widely used of such models are based on random
individual movement; the simplest, the Random Walk mo-
bility model (equivalent to Brownian motion), is used to
represent pure random movements of the entities of a sys-
tem [7]. A slight enhancement of this is the Random Way-
Point mobility model [18], in which pauses are introduced



between changes in direction or speed. More recently, a
large number of more sophisticated mobility models for ad
hoc network research have been presented [4, 17, 22].

However, all synthetic movement models are suspect be-
cause it is quite difficult to assess to what extent they map
reality. It is not hard to see, even only with empirical
observations, that the random mobility models generate
behaviour that is most unhuman-like. This analysis is con-
firmed by the examination of the available real traces. As
we will discuss later in this paper, mobility models based on
random mechanisms generate traces that show properties
(such as the duration of the contacts between the mobile
nodes and the inter-contacts time) very distant from those
extracted from real scenarios.

Our work is based on a simple observation. In mobile
ad hoc networks, mobile devices are usually carried by hu-
mans, so the movement of such devices is necessarily based
on human decisions and socialization behaviour. For in-
stance, it is important to model the behaviour of individu-
als moving in groups and between groups, as clustering is
likely in the typical ad hoc networking deployment scenar-
ios of disaster relief teams, platoons of soldiers, groups of
vehicles, etc. In order to capture this type of behaviour,
we define a model for group mobility that is heavily depen-
dent on the structure of the relationships among the people
carrying the devices. Existing group mobility models fail
to capture this social dimension [5].

Fortunately, in recent years, social networks have been
investigated in considerable detail, both in sociology and in
other areas, most notably mathematics and physics. Math-
ematical models of such networks have been empirically
shown to be useful in describing many types of relation-
ships, including real social relationships [31, 28].

In this paper, we propose a new mobility model that is
founded on social network theory. One of the inputs of
the mobility model is the social network that links the in-
dividuals carrying the mobile devices. The model allows
collections of hosts to be grouped together in a way that is
based on social relationships among the individuals. This
grouping is only then mapped to a topographical space,
with topography biased by the strength of social ties. The
movements of the hosts are also driven by the social re-
lationships among them. The model also allows for the
definition of different types of relationships during a cer-
tain period of time (i.e., a day or a week). For instance, it
might be important to be able to describe that in the morn-
ing and in the afternoon of weekdays, relationships at the
workplace are more important than friendships and family
one, whereas the opposite is true during the evenings and
weekends.

We evaluate our model using real mobility traces pro-
vided by Intel Research Laboratory in Cambridge and we
show that the model provides a good approximation of
real movements in terms of some fundamental parameters,
such as the distribution of the contacts duration and inter-
contacts time. In particular, the data show that an ap-
proximate power law holds over a large range of values for
the inter-contacts time. Instead, contacts duration distri-
bution follows a power law for a more limited range. These
characteristics of distribution are also very similar to those
observed by the researchers at the University of California
at San Diego and Dartmouth College [6].

The proposed model is partially based on the work pre-
sented in [25]. With respect to that short paper, many

aspects of the model have been revised to try to map real-
ity with more accuracy. More specifically, in this work the
formation of the groups is based on an algorithm for the de-
tection of communities in social networks [27]. The place-
ment of the groups and the dynamics of the hosts in the
geographic space have also been completely re-designed.
Furthermore, this paper presents a thorough evaluation of
the model and a comparison with real traces, which is not
presented in [25].

The paper has the following structure: Section 2 contains
a definition of social network and illustrates some of the
results offered by social network theory. Section 3 shows
how these results can be used to design a social network
founded mobility model. Section 4 illustrates the results
of the evaluation of the model based on the comparison
with real traces; some simulation results about the impact
of the proposed mobility model on the performance of the
AODV and DSR protocols are also discussed. In Section 5
we compare the proposed mobility model with the current
state of the art and we outline our current research di-
rections. Section 6 concludes the paper, summarizing the
original contribution of our work.

2. SOCIAL NETWORKS

A social network describes a set of people (or groups of
people) with some patterns of contact or interaction among
each others [36]. Research studies in the area of social net-
works started in the 1920s [9]. However, the first significant
quantitative results were presented by Rapoport [33] and
his colleagues in the 1950s and 1960s in a series of papers
in which they analyzed the statistics of epidemic diffusion
in populations characterised by different social structures.
Whilst this was pioneering exploratory work, it was not
rigorous from a scientific point of view. However, in that
period, a renewed interest in graph theory led to the def-
inition of the so-called random graphs by Paul Erdés and
Alfred Rényi [8]. This, then, was the beginning of the com-
plex networks research area, investigating properties such
as their topology, average diameter and degree of connec-
tivity, as well as the presence of clusters in networks.

In the recent years, various types of networks (such as
the Internet, the World Wide Web and biological networks)
have been investigated by researchers especially in the sta-
tistical physics community. Theoretical models have been
developed to reproduce the properties of these networks,
such as the so-called small worlds model proposed by Watts
and Strogats [41] or various scale-free models [29, 40]. Ex-
cellent reviews of the recent progress in complex and social
networks analysis may be found in [1] and [29].

However, as discussed by Newman and Park in [31], so-
cial networks appear to be fundamentally different from
other types of networked systems. In particular, even if
social networks present typical small-worlds behaviour in
terms of the average distance between pairs of individu-
als (the so-called average path length), they show a greater
level of clustering. In particular, in [31] the authors observe
that the level of clustering seen in many non-social systems
is no greater than in those generated using pure random
models. Instead in social networks, clustering appears to
be far greater than in networks based on stochastic mod-
els. The authors suggest that this is strictly related to the
fact that humans usually organize themselves into commu-
nities. Examples of social networks used for these studies
are rather diverse and include, for instance, networks of
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Figure 1: Example of social network.

coauthorships of scientists [28] and the actors in films with
Kevin Bacon [41].

Many mathematical models have been proposed in the
recent years to generate synthetic social networks [41] that
show the same properties of real ones. We will use these
results in order to generate realistic social networks struc-
tures that are one of the fundamental inputs of the pro-
posed mobility model.

3. DESIGN OF THE MOBILITY MODEL

In this section we show how we designed a mobility model
which is founded on the results of social network theories
briefly introduced. The description of the mobility model,
mirroring its conceptual steps, is organized as follows:

e Firstly, we describe how we model social relationships
and, in particular, how we use social networks as in-
put of the mobility model.

e Secondly, we present the establishment of the model:
we discuss how we identify communities and groups
in the network and how the communities are associ-
ated to a geographical space. Our observation here
is that people with strong social links are likely to be
geographically colocated often or from time to time.

e Thirdly, we describe the algorithm that is at the ba-
sis of the dynamics of the nodes, that, again, is based
on the strength of social relationships. We argue that
individuals with strong social relationships move to-
wards (or within) the same geographical area.

3.1 Using Social Networks as Input of the
Mobility Model

3.1.1 Modelling Social Relationships

One of the classic ways of representing social networks
is weighted graphs. An example of social network is repre-
sented in Figure 1. Each node represents one person. The
weights associated with each edge of the network is used
to model the strength of the interactions between individ-
uals [36]. It is our explicit assumption that these weights,
which are expressed as a measure of the strength of so-
cial ties, can also be read as a measure of the likelihood
of geographic colocation, though the relationship between
these quantities is not necessarily a simple one, as will be-
come apparent. We model the degree of social interaction
between two people using a value in the range [0, 1]. 0 indi-
cates no interaction; 1 indicates a strong social interaction.

Different social networks can be valid for different parts of
a day or of a week’.

As a consequence, the network in Figure 1 can be rep-
resented by the 10 x 10 symmetric matrix M showed in
Figure 2, where the names of nodes correspond to both
rows and columns and are ordered alphabetically. We re-
fer to the matrix representing the social relationships as
Interaction Matriz.

1 0.76 0.64 0.11 0.05 0 0 0.12 0.15 0
0.76 1 0.32 0 0.67 0.13 0.23 0.45 0 0.05
0.64 0.32 1 0.13 0.24 0 0 0.15 0 0
0.11 0 0.13 1 0.54 0.83 0.57 0 0 0
M = 0.05 0.67 0.24 0.54 1 0.2 0.41 0.2 0.23 0
0 0.13 0 0.83 0.2 1 0.69 0.15 0 0
0 0.23 0 0.57 0.41 0.69 1 0.18 0 0.12
0.12 0.45 0.15 0 0.2 0.15 0.18 1 0.84 0.61
0.15 0 0 0 0.23 0 0 0.84 1 0.65
0 0.05 0 0 0 0 0.12 0.61 0.65 1

Figure 2: Example of an Interaction Matrix repre-
senting a simple social network.

The generic element m; ; represents the interaction be-
tween two individuals ¢ and j. We refer to the elements
of the matrix as the interaction indicators. The diagonal
elements represent the relationships that an individual has
with himself and are set, conventionally, to 1. In Figure 1,
we have represented only the links associated to a weight
equal to or higher than 0.25.

The matrix is symmetric since, to a first approximation,
interactions can be viewed as being symmetric. However,
it is worth underlining that we are using a specific measure
of the strength of the relationships. It is probable that by
performing psychological tests, the importance of a rela-
tionship, such as a friendship, will be valued differently by
the different individuals involved; in our modelization, this
would lead to an asymmetric matrix. We plan to investi-
gate this issue further in the future.

The Interaction Matrix is also used to generate a Con-
nectivity Matriz. From matrix M we generate a binary
matrix C where a 1 is placed as an entry c;; if and only if
mg,; is greater than a specific threshold ¢ (i.e., 0.25). The
Connectivity Matrix extracted by the Interaction Matrix
in Figure 2 is showed in Figure 3. The idea behind this
is that we have an “interaction” threshold above which we
say that two people are interacting as they have a strong re-
lationship. The Interaction Matrix (and, consequently, the
Connectivity Matrix) can be derived by available data (for
example, from a sociological investigation) or using math-
ematical models that are able to reproduce characteristics
of real social networks. As we will discuss in Section 4.2.2,
the default implementation of our model uses the so-called
Caveman model [41] for the generation of synthetic social
networks with realistic characteristics (i.e, high clustering
and low average path length). However, this is a customiz-
able aspect and, if there are insights on the type of scenario
to be tested, a user-defined matrix can be inputed.

'Let us consider a family of three people, with one child.
During the days, when the child is at school and the parents
at their workplaces, their social relationship is weak (i.e.,
represented with low values in the matrix). During the
evening, the social ties are stronger as the family members
tend to be co-located (i.e., high values in the matrix). The
relationship between two colleagues sharing the same office
will be represented with a value higher than these family
relationships during the working hours in week days.
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Figure 3: Example of a Connectivity Matrix rep-
resenting a simple social network.

3.1.2  Detection of Community Structures

The simulation scenario is established by mapping groups
of hosts to certain areas in geographical space. After the
definition of the social graph described above, groups, i.e.,
the highly connected set of nodes in the graph, need to be
isolated. Fortunately, some algorithms can be exploited for
this purpose.

We use the algorithm proposed by Newman and Girvan
in [30] to detect the presence of community structures in
social networks represented by matrices, like the Connec-
tivity Matrix that we have defined in the previous section.
This algorithm is based on the calculation of the so-called
betweenness of edges. This provides a measure of the cen-
trality of nodes. For example, considering two communi-
ties connected by few inter-community edges, all the paths
through the nodes in one community to nodes in the other
must traverse one of these edges, that, therefore, will be
characterised by a high betweenness. Intuitively then, one
of the possible estimation of the centrality of an edge is
given by the number of shortest (geodesic) paths between
all pairs of vertices that run along it. In other words, the
average distance between the vertices of the network has
the maximum increase when the nodes with the highest
betweenness are removed.

Therefore, in order to extract the communities from the
network, nodes characterized by high values of centrality
are progressively detected in subsequent rounds. At each
round, one of the edges of the host with the highest cen-
trality is removed. The final result is a network composed
of (fairly distinguishable) groups of hosts (i.e., the commu-
nities).

The complexity of this algorithm is O(mn?), consider-
ing a graph with m edges and n vertices. The calculation
of the shortest path between a particular pair of vertices
can be perfomed using a breadth-first search in time O(m)
and there are O(n?) vertices. However, in [30], Newman
and Girvan proposed a faster algorithm with a complexity
equal to O(mn). A coincise description of this algorithm
for the calculation of the betweenness can be found in the
appendix of this paper.

As we said, the algorithm can be run a number of times
on the graph, severing more and more links and generat-
ing a number of distinguishable communities. However we
also need a mechanism to stop the algorithm when further
cuts would decrease the quality of the results: this would
mean that we have reached a state when we have mean-
ingful communities already. We adopted a solution based
on the calculation of an indicator defined as modularity
@ [30]. This quantity measures the proportion of the edges
in the network that connect vertices within the same com-
munity minus the expected value of the same quantity in
a network with the same community division but random

connections between the vertices. If the number of edges
within the same community is no better than random, the
value of @ is equal to 0. The maximum value of Q is 1;
such a value indicates very strong community structure. In
real social networks, the value of @ is usually in the range
[0.3,0.7] [30]. The analytical definition of the modularity
of a network division is presented in Section B of the ap-
pendix. At each run the algorithm severs one edge and
measures the value of (). The algorithm terminates when
the obtained value of @ is less than the one obtained in
the previous edge removal round. This is motivated by the
fact that @) presents one or, at maximum, but much more
rarely, two local peaks: therefore, we can stop when the
first local peak is reached. This is clearly an approximation
since the value of the other possible local peak (if exists)
may be higher, but it has been observed that the quality of
the division that we obtain is, in the vast majority of the
cases, very good [30]. Also, by adopting this technique, we
considerably simplify the computational complexity of the
algorithm.

In order to illustrate this process, let us now consider the
social network in Figure 1. Three communities (that can
be represented by sets of hosts) are detected by running
the algorithm: C; = {A,B,C}, C> = {D,E,F,G} and
Cs = {H,I,L}. Now that the communities are identified
given the matrix, there is a need to associate them with a
location.

3.2 Establishment of the Model: Placement
of the Communities in the Simulation Space

After the communities are identified, each of them is
randomly associated to a specific location (i.e., a square)
on a grid?. We use the symbol S, 4 to indicate a square in
position p, q. The number of rows and columns are inputs
of the mobility model.

Going back to the example, in Figure 4 we show how the
communities we have identified can be placed on a 3x4 grid
(the dimension of the grid is configurable by the user and
influences the density of the nodes in each square). The
three communities C1, C2, C3 are placed respectively in
the grid in the squares Sq,2, Sc,2 and Sp.4.

Once the nodes are placed on the grid, the model is es-
tablished and the nodes move around according to social-
based attraction laws as explained in the following.

3.3 Dynamics of the Mobile Hosts

As described in the previous section, a host is initially
associated to a certain square in the grid. Then, in order
to drive movement, a goal is assigned to the host. More
formally, we say that a host i is associated to a square Sp 4
if its goal is inside Sp,q. Note that host ¢ is not necessar-
ily always positioned inside the square Sp 4, despite this
association (see below).

The goal is simply a point on the grid which acts as final
destination of movement like in the Random Way-Point
model, with the exception that the selection of the goal is
not as random.

3.3.1 Selection of the first goal

2A non random association to the particular areas of the
simulation area can be devised, for example by deciding
pre-defined areas of interest corresponding for instance to
real geographical space. However, this aspect is orthogonal
to the work discussed in this paper.



When the model is initially established, the goal of each
host is randomly chosen inside the square associated to
its community (i.e, the first goals of all the hosts of the
community C; will be chosen inside the square Sq,2).

3.3.2  Selection of the subsequent goals

When a goal is reached, the new goal is chosen accord-
ing to the following mechanism. A certain number of hosts
(zero or more) is associated to each square Sy, at time ¢.
Each square (i.e., place) exterts a certain social attractiv-
ity for a certain host. The social attractivity of a square
is a measure of its importance in terms of the social rela-
tionships for the host taken into consideration. The social
importance is calculated by evaluating the strength of the
relationships with the hosts that are moving towards that
particular square (i.e., with the hosts that have a current
goal inside that particular square). More formally, given
Cs,., (i-e., the set of the hosts associated to square Sy 4),
we define social attractivity of that square towards the host,
i SAp,,, as follows

> My
gzésp q
SAIMH - w
where w is the cardinality of C's, , (i.e., the number of hosts
associated to the square Sy 4). In other words, the social
attractivity of a square in position (p,q) towards a host
i is defined as the sum of the interaction indicators that
represent the relationships between ¢ and the other hosts
that belong to that particular square, normalized by the
total number of hosts associated to that square. If w =0
(i.e., the square is empty), the value of SA4, 4, is set to 0.

The new goal is then randomly chosen inside the square
characterised by the highest social attractivity; it may be
again inside the same square or in a different one. New
goals are chosen inside the same area when the input so-
cial network is composed by loosely connected communities
(in this case, hosts associated with different communities
have, in average, weak relationships between each others).
On the other hand, a host may be attracted to a different
square, when it has strong relationships with both commu-
nities. From a graph theory point of view, this means that
the host is located between two (or more) clusters of nodes
in the social network®.

Let us suppose, for example, that host A has reached its
first goal inside the square S,,2. The new goal is chosen by
calculating the social attractivities of all the squares that
compose the simulation space and then by choosing the
highest. If, say, square S. 2 exterts the highest attractivity
(for example, because a host with strong relationship with
node A has joined that community), the new goal will then
be selected inside that square.

3.3.3  Social Network Reconfigurations and their Ef-
fects on the Dynamics of Mobile Hosts

Like in everyone’s life, the day movement are governed by
different patterns of mobility which depend on the people
we need to interact with. For example, most people spend
a part of their day at work, interacting with colleagues, and
another part at home with their families. In order to model

3This is usually the case of hosts characterised by a rel-
atively high betweenness that, by definition, are located
between two (or more) communities.
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Figure 4: Example of initial simulation configura-
tion.

this, we allow the association of different social networks
to different periods of a simulation.

Periodically, the social networks at the basis of the mo-
bility model can be changed. The interval of time between
changes is an input of the model. When the reconfigura-
tion of the underlying social network happens, nodes are
assigned to the new communities that are detected in the
network using the algorithms described in Section 3.1.2.
Communities are then randomly associated to squares in
the simulation space. This assignement does not imply im-
mediate relocation of the nodes, instead, it conditions the
choice of the next goal. In fact, goals are chosen inside the
square of the grid to which the community they belong to
is assigned. So hosts will move towards their destination
gradually. The nodes start moving towards the geographi-
cal region where other nodes that have strong interactions
with them will converge. This mirrors the behaviour, for
instance, of commuters who travel home every evening to
join their families.

4. IMPLEMENTATION AND EVALUATION

In order to evaluate our model we have performed a
number of tests, in particular, we have taken real mobil-
ity traces collected by Intel Research Laboratory in Cam-
bridge. We have then tested our model using realistic so-
cial networks and compared the mobility patterns with the
Intel traces. We have also compared the performance of
AODV [32] and DSR [19] using the Random Way-Point
and our Community based mobility models. In this section,
we will present and discuss the results of our simulations
comparing them with these data from real scenarios.

4.1 Implementation of the model

We implemented a movement patterns generator that
produce primarily traces for the ns-2 simulator [23], one of
the most popular in the ad hoc network research commu-
nity. However, the generator is also able to produce traces
in a XML meta-format that can be parsed and trasformed
into other formats (for example, by using XSLT) such as
the one used by GlomoSim/Qualnet [42]. The model is
available for downloading at the following URL: [omitted
for blind review].

4.2 Validation of the Model using Real Move-
ment Traces



Figure 5: Generation of the social network in input
using the Caveman model: (a) initial configuration
with 3 disconnected ‘caves’. (b) generated social
network after the rewiring process.

In this section, we present a comparison of the proper-
ties of the movement patterns generated by our mobility
model with those of the real traces provided by Intel Re-
search Laboratory in Cambridge. The description of these
measurement exercise is presented in [6]. In that paper,
the authors also compare their results with other publicly
available data sets provided by McNett and Voelker from
University of California at San Diego [24] and by Hender-
son et alii from Dartmouth College [12] showing evident
similarities between the patterns movements collected by
the three different groups. For this reason, we decided to
compare the traces obtained by using our mobility model
only with the data provided by the researchers in Cam-
bridge.

4.2.1 Description of the Data Sets

The traces were collected by Intel researchers using iMotes
(a modified version of the Berkeley Motes) [2] equipped
with Bluetooth. The iMotes were then given to members
of the staff of Intel Research Laboratory and University of
Cambridge. The iMotes were packed in keyfobs in order to
make sure that people carried them around. Each iMotes
logged contacts data in a flash memory using the standard
Bluetooth Baseband layer inquiry procedure. Every con-
tact was stored as a tuple composed of three fields, the
MAC address of the other device, the start and the end of
the interval of time of the contact. Every iMotes collected
information, not only on the other samplers, but also on
the other Bluetooth devices in reach. The iMotes were pro-
grammed to perform an inquiry for 5 seconds every 2+A
minutes with A randomly chosen in the range [—12,12]
seconds. This correction was introduced to avoid unde-
sired synchronization effects, i.e., to avoid that the iMotes
performed inquiries at the same time. In fact, iMotes are
not able to perform and reply to inquiries at the same time.

4.2.2 Description of the Simulation

We tested our mobility model using several runs generat-
ing different mobile scenarios and we compared the results
with the real movement patterns provided by Intel and syn-
thetic traces generated using a Random Way-Point model.

We tested our model considering a scenario composed of
100 hosts in a simulation area of 5 km x 5 km, divided
into a grid composed of 625 squares of 200 m (i.e., the
numbers of rows and columns of the grid were set to 25).
We chose a relatively large simulation scenario, with a low
population density, in order to better see the differences in
the results obtained with a Random Way-Point model. In
fact, in small simulation areas, the limited possible move-
ments and the higher probability of having two nodes in
the same transmission range may affect the simulation re-

sults introducing side-effects that are not entirely due to
the mobility model.

We also assumed that each device is equipped with an
omnidirectional antenna with a transmission range of 250
m, modeled using a free space propagation model. The
speeds of the nodes were randomly generated according to a
uniform distribution in the range [1—6] m/s. The duration
of the simulation is one day and the reconfiguration interval
is equal to 8 hours. These values have not been chosen to
reproduce the movements described by the traces provided
by Intel, rather, we were more interested in observing if
similar patterns could be detected in synthetic and real
traces. In other words, our goal has mainly been to verify
whether the movement patterns observed in Intel traces
were reproduced by our mobility model.

A key aspect of the initialization of our model is the se-
lection of the social network in input. We implemented a
generator of synthetic social networks using the so-called
Caveman Model proposed by Watts [41]. The social net-
work is built starting from K fully connected graphs (repre-
senting communities living in isolation, like primitive men
in caves). According to this model, every edge of the initial
network in input is re-wired to point to a node of another
cave with a certain probability p. The re-wiring process
is used to represent random interconnections between the
communities. Figure 5.a shows an initial network config-
uration composed by 3 disconnected communities (caves)
composed by 5 individuals; a possible social network after
random rewiring is represented in Figure 5.b.

Individuals of one cave are closely connected, whereas
populations belonging to different caves are sparsely con-
nected. Therefore, the social networks generated using
this model are characterized by a high clustering coeffi-
cient and low average path length. It has been proved that
this model is able to reproduce social structures very close
to real ones [41]. We generated social networks with dif-
ferent rewiring probabilities, also considering the case of
disconnected communities (i.e., p = 0).

We also implemented a movement patterns generator
based on the Random Way-Point model. We generated
traces with the same simulation scenarios in terms of size
of the area and characteristics of the mobile devices, with
hosts that move with a speed uniformly distributed in the
range [1 — 6] m/s and stop time equal to [1 — 10] m/s.

We repeated the experiments using a number of runs
sufficient to achieve a 10% confidence interval.

4.2.3  Simulation Results

The emergent structure of the network derived by ana-
lyzing the Intel traces is typically exponential [1]; in fact,
the degree of connectivity shows a local peak near the aver-
age. Our mobility model (indicated with CM) produces a
similar type of distribution as shown in Figure 6. The peak
shifts to the right as the density of the squares increases.
We analyzed two further properties of the movement pat-
terns, the contact duration and the inter-contacts time.
We adopt the same definitions used by the authors of [6] in
order to be able compare the results. We define contact du-
ration as the time interval in which two devices are in radio
range. We define inter-contacts time as the time interval
between two contacts. These indicators are particularly
important in ad hoc networking and, in particular, in op-
portunistic mobile networks, such as delay tolerant mobile
ad hoc networks [26, 20]: inter-contacts times define the
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frequency and the probability of being in contact with the
recipient of a packet or a potential carrier in a given time
period.

Figure 7 shows the comparison between the inter-contacts
time and the contact duration cumulative distributions* us-
ing log-log coordinates. These distributions are extracted
from the real and synthetic traces generated by the Ran-
dom Way-Point (indicated with RWP) and our Community
based mobility model with different rewiring probabilities
p.

With respect to the inter-contacts time, our traces (ex-
cluding the case with p = 0 that we will discuss sepa-
rately) shows an approximate power law behaviour for a
large range of values like those extracted from Intel data.
A similar pattern can be observed in UCSD and Dartmouth
traces [6]. The cumulative distribution related to Random
Way-Point, instead, shows a typical exponential distribu-
tion. The same behaviour can be observed for the traces
generated using our Community based mobility model with
a probability of rewiring equal to 0. In fact, in this case, the
only movements of the hosts outside the assigned square
happen when a reconfiguration takes place (i.e., a new gen-
eration of the social networks takes place and a consequent
new assignment to different squares in the grid are per-
formed). However, the case of disconnected and isolated
communities is not so realistic. As far as the contacts
time distribution is concerned, we observe a power law be-
haviour for a much more limited range of values and, in
general, with a lower angular coefficient of the interpolat-
ing line. The traces from Dartmouth College and UCSD
also show a power law distribution with different angular
coeflicients [6]. It seems that data related to different sce-
narios are characterized by different types of power law
distribution.

By plotting the same distributions using semi-log coor-
dinates (see Figure 8), the differences between the curves
corresponding to real traces and those generated using the

4Cumulative distributions are generally used instead of
frequency distributions to avoid the issues related to the
choice of the bins of the plot. It is possible to prove that
if a set of data shows a power law behaviour using a fre-
quency histogram, its cumulative distribution also follows
the same pattern.

Random Way-Point mobility model are even more evident.
The exponential nature of the cumulative distribution of
the inter-contacts time® extracted by the latter is clearly
reflected by the approximated straight line that is shown
in the figure.

Figure 9.a and 9.b show the influence of the speed
respectively on the cumulative distributions of the inter-
contacts time and contacts duration. We simulated sce-
narios with host speed uniformly distributed in the range
[1 —6], [1 —10] and [1 — 20}m/s. The cumulative distri-
butions related to all these scenario can be approximated
with a power law function for a wide range of values.

In many of our experiments, the coefficient of the power
law of the distribution of the Intel traces is different from
those related to synthetic traces generated using our model.
Different coefficients can be observed in the available sets
of real traces. In a sense, it seems that the values of these
coefficients characterize the various mobile settings. It is
worth noting that currently there are not available theo-
retical models that justify the emergence of these distribu-
tions.

The impact of the density of the population in the sim-
ulation scenario is presented in Figure 10. We simulated
scenarios composed of 100, 200, 300 nodes with a start-
ing number of groups for the Caveman model, respectively
equal to 10, 20, 30, and a rewiring probability of 0.2. Also
in these scenarios, the inter-contacts time and contacts du-
ration distributions follow a similar pattern. As discussed
previously, our aim was not to exactly reproduce the traces
provided by Intel. However, quite interestingly, we observe
that the inter-contacts time distribution lie in between the
curves representing the scenario composed of 100 and 200
nodes. The number of nodes recorded in the Intel experi-
ments was in fact 140. Instead, the contacts duration dis-
tribution is bounded by the curves extracted by these two
synthetic traces for a smaller range of values. Finally, in
Figure 11 we consider a scenario composed of 100 hosts con-
nected by a social network generated using different initial
numbers of groups (i.e., caves) as input for the Caveman
model (with a re-wiring probability equal to 0.1). By vary-
ing the number of groups, the density of the squares of the
grid changes. The power law patterns can be observed in
all the scenario, also with a large number of small initial
groups.

4.3 Influence of the Choice of the Mobility
Model on Routing Protocols Performance

4.3.1 Simulation Description

In order to be able to compare routing protocol per-
formance with exisiting results, we tested the community
model in case of dense networks. Using ns-2, we simulated
a scenario composed of 50 hosts and we compared the per-
formance in terms of delivery ratio of the AODV [32] and
DSR [19] protocols. We used a 1000m x 1000m simulation
area with a maximum node transmission range equal to
250m. We chose the two-ray pathloss model as propaga-
tion model and at the MAC layer, the IEEE 802.11 DCF
protocol was used with a bandwidth equal to 2 Mbps. We
started 10 sessions between randomly chosen hosts® using
CBR traffic with data packet size and sending rate respec-

5This behaviour has been theoretically studied and pre-
dicted by Sharma and Mazumdar in [37].

5This kind of traffic can be considered as a worst case sce-
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tively equal to 512 bytes and 4 packets/second. The simu-
lation time was equal to 2 hours.

We studied the influence of the speed on the performance
comparing the results obtained by using the Random Way-
Point model and the Community based mobility model
presented in this paper. Every node in the simulation is
moving at the same speed. With respect to the Random
Way-Point model, the stopping times are chosen randomly
in the interval [1 —10]m/s. As far as our mobility model is
concerned, the reconfiguration interval was set to 1 hour.
The social network in input was generated with the Cave-
man model with 5 groups of 10 individuals and a re-wiring
probability equal to 0.1. The simulation scenario was di-
vided into a 5x5 grid. We performed a number of runs
sufficient to achieve a 10% confidence interval.

4.3.2  Simulation Results

nario; in reality, it is probable that sessions will be between
hosts of the same community. We plan to investigate this
aspect in the future, developing a social networks founded
traffic generator.

Using the Random Way-Point mobility model, as ex-
pected and confirming the results obtained by the authors
of these protocols [32, 19], the delivery ratio decreases as
the speed increases (Figure 12). Instead, using our model,
the decreasing trend of the delivery ratio is less evident,
since the emerging structure is composed of groups of hosts
moving in limited areas (i.e., the square of the grids) that
are ‘bridged’ by hosts roaming among them. In other
words, the movement of most of the hosts is constrained
in geographical terms so topology changes are less frequent
than in the case of a pure random model. As it is possible
to observe in Figure 12, the difference in terms of perfor-
mance using the two mobility models is more evident for
the DSR protocol. In case of fixed hosts (i.e., with a speed
equal to 0), the delivery ratio that we obtained using our
mobility model is lower than in the scenarios with a speed
greater than 0, since in the former case, there may be dis-
connected communities, whereas in the latter, hosts move
between communities, providing a link between them.

S. DISCUSSION
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5.1 Related Work

Many mobility models have been presented with the aim
of allowing scalability testing of protocols and algorithms
for mobile ad hoc networking. A comprehensive review
of the most popular mobility models used by the mobile
ad hoc research community can be found in [5]. How-
ever, it is interesting and, at the same time, surprising
to note that even the best solutions and approaches have
only been tested using completely random models such as
the Random Way-Point model, without grouping mecha-
nisms. A more refined approach used a simple groups mo-
bility model which still had a large random component in
the way groups were created and moved [14]. The almost
pervasive adoption of such models has generated a consid-
erable amount of work that builds on the reasonableness of
random mobility models.

The work most directly related to ours can be found
in [13]. This model is predicated upon similar assump-
tions, but is considerably more limited in scope. In that
model hosts are statically assigned to a particular group
during the initial configuration process, whereas our model

accounts for movement between groups. Moreover, the au-
thors claim that mobile ad hoc networks are scale-free, but
the typical properties of scale-free networks are not ex-
ploited in the design of the model presented by the authors.
The scale-free distribution of mobile ad hoc networks is still
not proven in general, since practical measurements are not
currently available. Scale-free properties are strictly depen-
dent on the movements of hosts and therefore are depen-
dent on the actual simulated scenarios/applications [11].
With respect to this work, we allow the setting of the ini-
tial social network, which conditions the movement pat-
terns, this enables different kinds of networks to emerge,
including small world and scale free.

In recent years, many researchers have tried to refine
existing models in order to make them more realistic. In
[17], a technique for the creation of a mobility models that
include the presence of obstacles is presented. The speci-
fication of obstacles is based on the use of Voronoi graphs
in order to derive the possible pathways in the simulation
space. This approach is orthogonal to ours; this would be
an interesting extension of the model as discussed in the
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next section.

Tuduce and Gross in [39] present a mobility model based
on real data from the campus wireless LAN at ETH in
Zurich. They use a simulation area divided into squares
and derive the probability of transitions between adjacent
squares from the data of the access points. Also in this case,
the session duration data follow a power law distribution.
This approach can be a refined version of the Weighted
Way-Point Mobility Model [15], based on the probability of
moving between different areas of a campus using a Markov
model. Moreover, Tuduce and Gross’ model represents the
movements of the devices in an infrastructure-based net-
work and not ad hoc settings. In [22], the authors try
to reproduce the movements of pedestrians in downtown
Osaka by analysing the characteristics of the crowd in sub-
sequent instants of time and maps of the city using an
empirical methodology. In general, the main goal of these
works is to try to reproduce the specific scenarios with a
high degree of accuracy. We focus, instead, on the cause of
these movements, trying to capture the social dimensions
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that lead to general emergent human movement patterns.

Some interesting studies have been recently carried out
on the connectivity of ad hoc networks with respect to com-
plex networks theory. Glauche et alii in [11] discuss some
network properties using percolation theory [38], that is,
an application of complex networks theory derived by the
investigation of physical phenomena such as phase tran-
sitions in molecular lattices. In [35], the authors present
mathematical results about the possible emergence of scale-
free structures in ad hoc networks. However, the authors
consider only fized ad hoc networks (such as peer-to-peer
networks), without analysing the influence of movement in
the definition of their model.

5.2 Possible Improvements of the Model and
Current Research Directions

A number of possible features can be added to the mo-
bility model presented in this paper in order to increase its
realism. Many researchers in the ad hoc community have
been focussing on different aspects of this problem. Some



of the techniques are orthogonal to this work and can be
integrated in our model. We plan to explore these possi-
ble refinements in the future. More specifically, some of
the most important improvements can be summarized as
follows:

e Non random assignment of the nodes to the
geographical locations A possible improvement of
the model may be the assignment of the communi-
ties based on real mapping between groups of people
and geographical locations (such as students moving
around lecture rooms and halls in a campus, etc.).
An example of this kind of mobility models is [15].
In the current implementation, the generation of the
social networks is based on the mathematical model
described above and the placement of the commu-
nities is random. This allows for multiple runs with
different automatically generated social networks and
mobile scenarios. However, the current implementa-
tion can be easily modified and replaced by a custom
initialization of the simulation settings.

e Movement determined by pre-defined trails Many

existing mobility models are based on the definition of
trails or paths that are used to define the movements
of the mobile nodes in the simulation scenarios. Ex-
amples are the Manhattan model [5] or other models
used to simulate protocols and systems for vehicular
ad hoc networks [34]. In these models hosts move be-
tween different locations following precise paths that
represent roads or motorways. We plan to study the
effects of the introduction of pre-defined trails in our
model, in particular to characterize the movements
between different communities (i.e., squares of the
grid) with better accuracy.

e Presence of obstacles As discussed in the previous
subsection, in [17] Jardosh et alii propose a modified
version of the Random Mobility Model that allows for
the insertion of obstacles in the simulation space. The
definition of obstacles can also be easily integrated in
our mobility model.

Finally, we plan to study the connectivity of the gener-
ated mobile networks also in relation to the social networks
given in input using results from graph theory studies [3].

6. CONCLUSIONS

We have presented a new mobility model based on so-
cial network theory and predicated on the assumption that
mobility patterns are driven by the fact that devices are
carried by humans and that the movements are strongly
affected by the relationships between them.

The paper has described the generation of the mobility
model, its implementation and an evaluation based on the
comparison between our approach, existing random mo-
bility models and real movement traces. We have shown
that our mobility model generates traces that present char-
acteristics similar to real ones, in terms of inter-contacts
time and contacts duration. We have also compared the
performance in terms of delivery ratio of the AODV and
DSR protocols using the Random Way-Point model and
our Community based model.
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APPENDIX
A. BETWEENNESS OF A NODE

The betweenness of a node in a graph is defined as the
total number of shortest paths between pairs of nodes that
pass through it [10]. The steps of the algorithm proposed
by Newman are the following:

e For each vertex j, the shortest path reaching it from
every vertices in the network is calculated by using
the following algorithm:

1. Assign to vertex j a distance d equal to 0;

2. For each vertex ¢ with assigned distance i, follow
each attached edge to the vertex k and, if k£ has
not already been assigned a distance, assign it
distance d + 1. i is declared a predecessor of k;

3. Increment the value of the distance d by 1;

4. Repeat from Step 2 until there are no unassigned
vertices left.

e A variable b; is assigned to every vertex of the network
with initial value 1.

e Considering the vertices i sorted from the farthest to
the nearest, the value of b; is added to the correspond-
ing variable on the predecessor vertex of i. If ¢ has
more than one predecessor, then b; is equally subdi-
vided among them.

e The resulting values of b; represent the number of
geodesic paths to vertex j that run through each ver-
tex of the lattice. To calculate the betweenness for
all paths, the b; are added to a variable b; that is
maintained for each variable. The entire calculation
is repeated for all the vertices. The final value of b
represents the betweenness of vertex 1.

The algorithm is presented and discussed in more details
in [30].

B. MODULARITY

Let us consider a division of a network into & communi-
ties. We define a k X k symmetric matrix e the elements
e;; of which are the proportion of all edges in the network
that link vertices in community ¢ to vertices in commu-
nity j. The trace of this matrix Tr e = 3. e gives the
proportion of edges in the network that connect vertices
in the same community. A good division into communi-
ties should have a high value of this trace, meaning that a
good portion of the edges of the network is of edges “in-
side” a community. However, this is not sufficient to judge
the quality of the division. In fact, the case of one single
community corresponds to the case of Tr e = 1.

Therefore, we define the rows sums a; = Zj e;; which
represents the proportion of edges that connect to vertices
in community 4. Thus, it is possible to define the modular-
ity @ of a network division as follows:

Q=> (ess—al)=Tre—|e’]

where ||€?|| is the sum of all the elements of the matrix e?.
More details can be found in [30].



