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 INTRODUCTION 

he connection between creativity and machines is as old as computer science itself. In 1842,
ady Lovelace, an English mathematician and writer, who is recognized by many as the first com-
uter programmer, issued what is now known as “Lovelace’s Objection” [ 274 ]. She stated that the
nalytical Engine (the digital programmable machine proposed by Charles Babbage [ 9 ]) “has no
retensions to originate anything. It can do whatever we know how to order it to perform” [ 184 ]. In-
eed, in the centuries that followed, numerous projects and studies have been undertaken with the
im of designing machines capable of “originating something” [ 51 , 57 , 120 , 155 , 183 , 214 ]. We have
itnessed the emergence of a specialized field in computer science, namely Computational Cre-

tivity [ 41 ], which concerns the study of the relationship between creativity and artificial systems
 56 , 289 ]. 

In this context, the adoption of deep learning (DL) techniques has led to substantial break-
hroughs in recent years. Vast computational power and very large amounts of available data are
t the basis of the increasing success of deep generative models (i.e., generative models based
n DL [ 83 ]). Indeed, generative deep learning technologies have been used to write newspaper
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rticles, 1 generate human faces [ 144 ] and voices [ 166 ], design drugs and proteins [ 139 ], and even
reate artworks sold for a hundred thousand dollars. 2 While it is apparent that current technolo-
ies are able to generate impressive outputs, at the same time it is also possible to argue that they
annot be considered creative in general [ 27 ]. In fact, the goal of generative deep learning is to
roduce synthetic data that closely resemble real ones fed in input [ 83 ]. On the other hand, cre-
tivity involves novelty and diversity [ 195 ]. While for some problems mere content generation
 282 ] might be sufficient, for other tasks, e.g., in the Arts, the ability to create different (but still
aluable) outputs is essential: a creative model can find practical applications in the arts and indus-
rial design as support for artists, content creators, designers and researchers, just to name a few.

oreover, generating more diverse data might mitigate legal and ethical issues related to content
eproduction [ 112 , 287 ]. 

Goal and contributions of the survey. The goal of this survey is to present and critically
iscuss the state of the art in generative deep learning from the point of view of machine cre-
tivity. Moreover, to the best of our knowledge, this is the first survey that explores how current
L models have been or can be used as a basis for both generation (i.e., producing creative arti-

acts) and evaluation (i.e., recognizing creativity in artifacts). The contribution of this survey can
e summarized as follows. After a brief overview of the meaning and definitions of creativity in
ection 2 , Section 3 presents an in-depth analysis of generative deep learning through the intro-
uction of a new taxonomy and a critical analysis of machine creativity. Then, several machine

earning (ML) -based methodologies for evaluating creativity are presented and discussed in Sec-
ion 4 . Finally, Section 5 concludes the paper, outlining open questions and research directions for
he field. 

Related surveys. We now provide an overview of other surveys in areas related to the present
ork. For readers interested in a survey on deep generative models, we recommend [ 24 , 110 ]; for

n analysis of the state of the art in evaluation in computational creativity, [ 153 ] is an essential
eading; for a review on AI and creativity in general, we recommend [ 233 ]; for a practical view of
enerative deep learning, we suggest [ 83 ]; finally, for an in-depth examination of artistic AI works
also in human-computer co-creations [ 108 ]), [ 187 ] is a very comprehensive source of information.

 DEFINING CREATI VIT Y 

reativity has been studied for decades, and yet, there is no agreement about its definition. More
han one hundred definitions have been provided [ 5 , 271 ], and the number is still growing. In other
ords, we can say that creativity is a suitcase word, i.e., people conflate multiple meanings into it

 188 ]. Nonetheless, some concepts are nowadays widely accepted. One of them is the possibility of
tudying creativity from four different perspectives: person , press , process , and product [ 227 ]. These
ave also been studied in computational creativity [ 138 ]. However, the focus has traditionally been
n the product dimension. Indeed, the idea is that we study creativity without considering the inner
eing of the creator (person), the relation with the environment (press), or if the process maps to
he steps a human goes through in the act of creation (e.g., [ 6 ]). Even if they are important, we
ocus on aspects of creative work in relation to the output (product) itself, and on aspects of the
enerative process that may or may not lead to a creative product. 
For this reason, we consider Boden’s three criteria for studying machine creativity, defined as

the ability to come up with ideas or artifacts that are new, surprising and valuable ” [ 22 ]. In particu-
ar, value refers to utility, performance, and attractiveness [ 179 ]; it is related with both the quality
f the production, and its acceptance by the society. Novelty refers to the dissimilarity between
 w w w.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3 
 w w w.christies.com/features/a- collaboration- between- two- artists- one- human- one- a- machine- 9332- 1.aspx 
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he produced artifact and other examples in its class [ 229 ]. Finally, surprise refers to the degree
o which a stimulus disagrees with expectation [ 17 ]. We underpin our analysis on Boden’s three
riteria since they have been widely adopted. Boden also suggests that three forms of creativity
an be identified [ 22 ] to describe how a novel and surprising product is obtained. The three forms
f creativity are combinatorial , exploratory and transformational , ordered by increasing rarity and
roduced surprise. Combinatorial creativity is about making unfamiliar combinations of familiar
deas, e.g., analogies in textual forms or collages in the visual arts. Exploratory creativity involves
he exploration of the conceptual space defined by the cultural context considered, e.g., inventing
 new type of cut for fries. Transformational creativity involves changing that space in a way that
llows new and previously inconceivable thoughts to become possible, as it has been for free verse
n poetry or abstract painting in art. 

Finally, it is worth noting that Boden also identified four different questions that emerge when
tudying computational creativity. These are referred to as Lovelace questions, because many peo-
le would respond to them by using Lovelace’s objection. The first question is whether computa-
ional ideas can help us understand how human creativity works. The second is whether computers
ould ever do things that at least appear to be creative. The third is whether a computer could ever
ppear to recognize creativity. Finally, the fourth is whether computers themselves could ever re-
lly be creative, i.e., with the originality of the products only deriving from the machine itself [ 22 ].
hile the first one is studied in Boden’s work, we will provide the reader with an overview of the

echniques that can possibly be used to answer the second (Section 3 ) and the third (Section 4 ).
ith respect to the fourth, Boden states that “it is not a scientific question as the others are, but

n part a philosophical worry about “meaning” and in part a disguised request for a moral political
ecision”. We agree with this position, but we hope that our survey will provide the reader with
lements for answering the fourth one as well. 

 GENERATIVE MODELS 

 generative model can be defined as follows: given a dataset of observations X , and assuming
hat X has been generated according to an unknown distribution p data , a generative model p model 

s a model able to mimic p data . By sampling from p model , observations that appear to have been
rawn from p data can be generated [ 83 ]. Generative deep learning is just the application of deep
earning techniques to form p model . 

At first glance, this definition appears to be incompatible with those presented in Section 2 .
ndeed, mimicry is the opposite of novelty. However, what a generative model should aim at mim-
cking is the underlying distribution representative of the artifacts, and not the specific artifacts
hemselves; in other words, it should aim at learning the conceptual space defined by the cultural
ontext considered. A generative model can be said to exhibit combinatorial creativity if it can
ample new and valuable works that are combinations of real data and exploratory creativity if
he works actually differ from real ones. Vice versa, transformational creativity emerges if and
nly if the distribution for sampling diverges in some way from the underlying one (e.g., due to a
ifferent training process, by altering the distribution after learning, or by changing the sampling
echnique). In summary, what matters is how the space of solutions is learned and how artifacts
re sampled from it. 

In this section, we aim at studying the level of creativity of existing generative deep learning
odels. Following the discussion above, we analyze how the models learn their spaces of solutions

nd how the observations are generated from them. A new generative deep learning taxonomy
s then introduced based on the different training and sampling techniques at the basis of each

ethod. Figure 1 provides a summary of the seven generative classes considered in this survey.
ince our focus is on machine creativity, we do not discuss the implementation details of each
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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Fig. 1. A schematic view of the seven classes of generative learning methods presented in this survey. Top, 

left to right: Variational Autoencoder ( 3.1 ), with a decoder generating x ′ given a latent vector z , and an 

encoder representing x into a latent distribution; Generative Adversarial Network ( 3.2 ), with a generator to 

produce x ′ , and a discriminator to distinguish between real x and synthetic x ′ ; Sequence prediction model 

( 3.3 ), with a generator to output x one token after the other given in input previous tokens; Transformer- 

based model ( 3.4 ), with a Transformer outputting x one token after the other given in input previous tokens, 

or a masked version of x . Bottom, left to right: Diffusion model ( 3.5 ), with a model to learn an error ϵ , which 

is used to incrementally reconstruct x 0 ; Reinforcement Learning (RL)-based method ( 3.6 ), with a generative 

model acting (i.e., progressively generating x ) to maximize a given reward function; Input-based methods 

( 3.7 ), with an input optimized by a given loss. The input can be a vector z given to a generative model to 

obtain the desired output, or directly a product x becoming the desired output. 
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lass of methods. We instead present the core concepts at the basis of each class; some relevant
xamples of models ; potential applications ; and a critical discussion evaluating the level of machine
reativity considering the definitions above. As a final remark, it is worth noting that we limit our
xamples to the Arts (e.g., poems, music, or paintings). Indeed, generative learning can be applied
o design [ 95 , 180 ]; game content generation (see [ 172 ] for a comprehensive survey); recipes [ 193 ,
80 ]; scientific discovery [ 52 , 241 ]; and in general to any activity, which has a non-trivial solution
 34 ]. 

.1 Variational Auto-Encoders 

3.1.1 Core Concepts. A Variational Auto-Encoder (VAE) [ 150 , 226 ] is a learning architecture
omposed of two models: an encoder (or recognition model) and a decoder (or generative model).
he former compresses high-dimensional input data into a latent space, i.e., a lower-dimensional
pace whose features are not directly observable, yet provide a meaningful representation. The lat-
er decompresses the representation vector back to the original domain [ 83 ]. Classic autoencoders
irectly learn to represent each input in a latent representation vector. Conversely, VAEs learn a
Gaussian) distribution over the possible values of the latent representation, i.e., the encoder learns
he mean and the (log of the) variance of the distribution. 

VAEs are trained by optimizing two losses: the reconstruction loss and the regularization loss.
he former is the log-likelihood of the real data x from the decoder given their latent vectors z ,

.e., it is the error of the decoder in reconstructing x . The latter is the Kullback-Leibler (KL)

ivergence between the distribution learned by the encoder and a prior distribution, e.g., a Gauss-
an. Notably, the latent vector z in input to the decoder is obtained by means of the so-called
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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eparameterization trick , i.e., by sampling from the distribution defined by the mean and the vari-
nce. Without it, sampling would induce noise in the gradients required for learning [ 151 ]. 

The mathematical derivation of the whole loss has its roots in variational inference [ 135 ]. In-
eed, VAEs can be seen as an efficient and stochastic variational inference method, in which neu-

al networks (NNs) and stochastic gradient descent are used to learn an approximation (i.e., the
ncoder) of the true posterior [ 87 ]. In VAEs, similar high-dimensional data are mapped to close
istributions. This makes it possible to sample a random point z from the latent space, and still
btain a comprehensible reconstruction [ 83 ]. On the other hand, VAE tends to produce blurred im-
ges [ 307 ]. It may also happen that high-density regions under the prior have a low density under
he approximate posterior, i.e., these regions are not decoded to data-like samples [ 7 ]. Finally, the
bjective can lead to overly simplified representations without using the entire capacity, obtaining
nly a sub-optimal generative model [ 37 ]. 

3.1.2 Examples of Models. Several models based on VAEs have been proposed [ 151 ] in recent
ears. In the following, we focus on those relevant to our discussion on machine creativity. In
-VAE [ 113 ], a parameter β is used to scale the magnitude of the regularization loss, which al-

ows a better disentanglement of the latent space [ 38 ]. Another example is VAE-GAN [ 156 ], which
erges VAE and Generative Adversarial Networks (GAN ; see Section 3.2 ) [ 98 ]. This is done

y treating the decoder as the generator of the GAN, thus training it by means of the GAN loss
unction. This leads to the generation of substantially less blurred images. Similarly, Adversar-

ally Learned Inference (ALI) [ 71 ] merges VAE and GAN by asking the discriminator to dis-
inguish between pairs of real data (and their latent representations) and pairs of sampled rep-
esentations and synthetic data. Instead, Adversarial Autoencoders (AAE) [ 181 ] substitute the
egularization loss with a discriminative signal, where the discriminator has to distinguish be-
ween random latent samples and encoded latent vectors. Another way to address the problem
f “sample blurriness” is with PixelVAE [ 105 ], where the autoregressive PixelCNN [ 276 , 277 ] is
sed as the decoder. In [ 26 ], to deal with sequential data such as texts, where generation requires
ore steps, the encoder learns to produce a latent representation of a sentence, while the recur-

ent neural network RNN-based decoder learns to reproduce it word after word. However, VAE
an also generate text by means of convolution and deconvolution [ 243 ]. To solve the problem of
ow-density regions, the authors of [ 7 ] propose an energy-based model called noise contrastive

rior (NCP) , trained by contrasting samples from the aggregate posterior to samples from a base
rior. Finally, another interesting model is Vector Quantised-VAE (VQ-VAE) [ 278 ]; in this case,
he encoder outputs discrete, rather than continuous, codes, and the prior is learned rather than
tatic. 

3.1.3 Applications. VAEs can be used for semi-supervised classification to provide an auxiliary
bjective, improving the data efficiency [ 149 , 175 ]; to perform iterative reasoning about objects in
 scene [ 77 ]; to model the latent dynamics of an environment [ 286 ]. Of course, VAEs have also
een used to generate synthetic data, including for conditional generation. For example, a layered
oreground-background generative model can be used to generate images based on both the latent
epresentation and a representation of the attributes [ 296 ]. In [ 109 ] the latent space of a VAE is
rained on chemical structures by means of gradient-based optimization toward certain properties
see Section 3.7 ). AAEs have also been applied to the same problem [ 140 ]. Finally, another interest-
ng application of VAE is Deep Recurrent Attentive Writer (DRAW) [ 101 ]. DRAW constructs
cenes in an iterative way, by accumulating changes emitted by the decoder (then given to the
ncoder in input). This allows for iterative self-corrections and a more natural form of image con-
truction. RNNs and attention mechanism are used to consider previous generations and to decide
t each time step where to focus attention, respectively. 
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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3.1.4 Critical Discussion. Models based on VAEs can be considered as an example of ex-
loratory creativity. The latent space is learned with the goal of representing data in the most
ccurate way. The random sampling performed during generation is therefore an exploration of
hat space: regions not seen during training can be reached as well, even though they can lead
o poor generation [ 7 ] and some more complex variants may be needed, as discussed. On the
ther hand, there is no guarantee that the results will be valuable, novel, or surprising. There
s no guarantee that the generation from random sampling is of good quality or diverse from
raining data. Indeed, given their characteristics, VAEs discourage novelty in a sense. In particular,
iversity could be achieved in theory using VAEs and gradient-based optimization techniques,
uch as those presented in [ 109 ], with novelty and surprise as target properties. We will discuss
hese aspects in Section 3.8 . 

.2 Generative Adversarial Networks 

3.2.1 Core Concepts. A Generative Adversarial Network [ 98 ] is an architecture composed by
wo networks: a generative model and a discriminative model. The latter learns to distinguish be-
ween real samples and samples generated by the former. In parallel, the former learns to produce
amples from random noise vectors such that they are recognized as real by the latter. This com-
etition drives both models to improve until the generated samples are indistinguishable from the
riginal ones. 
The adversarial training allows the generator to learn to produce seemingly real samples from

andom noise without being exposed to data. The simplicity of the idea and the quality of re-
ults are at the basis of the success of GANs. However, few limitations exist. For instance, GAN
an suffer from mode collapse, where the generator only learns to produce a small subset of
he real samples [ 186 ]. In addition, the latent space of random inputs is typically not disentan-
led and it is necessary to introduce constraints in order to learn an interpretable representation
 147 ]. 

3.2.2 Examples of Models. The number of proposed variants is still growing. An in-depth sur-
ey on GANs is [ 103 ]. Indeed, several refinements have been proposed in the past years, such as
sing deep convolutional networks [ 217 ] or self-attention [ 301 ], incrementally growing the net-
orks [ 143 ], or scaling the model parameters [ 31 ]. In the following, we present examples that are

elevant to the issue of machine creativity. 
The problem of non-meaningful representation has been addressed in different ways. For in-

tance, InfoGAN [ 46 ] adds a latent code c to z . An auxiliary model learns to predict c given the
ample generated by means of it. In this way, it can learn disentangled representations in a com-
letely unsupervised manner. Another possibility is Bidirectional GAN (BiGAN) [ 67 ]. In order
o include an inverse mapping from data to latent representation, an encoder is added to the ar-
hitecture. The discriminator is then trained to distinguish between pairs of random noise and
ynthetic data and pairs of real data and latent encoding. It is possible to condition the generation
y means of a target content [ 204 ], a text [ 224 ], or even an image [ 125 ]. In order to do so, it is
ufficient to use the conditional information as input for both generator and discriminator [ 189 ].
imilarly, image-to-image translation is possible also without paired datasets. CycleGAN [ 310 ]
rains two generators (from one domain to another, and vice versa) so that each of them produces
mages both from the target domain and correctly reconstructed by the counterpart. 

In StyleGAN [ 145 , 146 ], the generator architecture is re-designed in order to control the image
ynthesis process. The style of the image is adjusted at each layer based on the latent code (the
pecific intermediate code to control each layer is provided by a non-linear mapping network).
his allows for the automatic separation of high-level attributes from stochastic variations in
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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he generated images. It also allows for mixing regularization, where two latent codes are used
lternatively to guide the generator. StyleGAN-V [ 248 ] builds on top of it to learn to produce
ideos by only using a few frames of it. To generate longer and more realistic motions, a two-stage
pproach can be used as well: first, a low-resolution generator is adversarially trained on long
equences; then, a high-resolution generator transforms a portion of the produced, low-resolution
ideo in a high-resolution one [ 32 ]. 

Finally, it is also worth mentioning variants that adapt GANs to sequential tasks (e.g., text gen-
ration). Since GANs require the generator to be differentiable, they cannot generate discrete data
 97 ]. However, several techniques have been proposed to avoid this problem. One possibility is to
ransform the discrete generation into a continuous one. Music can be processed like an image
y considering its waveform (as in WaveGAN [ 66 ] and GANSynth [ 76 ]) or its musical score com-
osed of tracks and bars (as in MuseGAN [ 68 ]). Music in a desired style can be obtained through
onditional inputs. Another possibility is to consider a soft-argmax function as an approximation
f the inference for each step [ 304 ]. TextGAN [ 305 ] uses it together with feature matching to learn
he production of sentences. In place of the discriminative signal, it uses the difference between
he latent feature distributions of real and synthetic sentences learned by the discriminator. An-
ther solution is to transform the GAN into a Reinforcement Learning (RL) framework, as in
equential GAN (SeqGAN) [ 300 ]. The generative model is the agent; the tokens generated so far
orm the state; the selection of the next token to be generated is the action to be performed; and the
iscriminative signal is the reward. The REINFORCE algorithm [ 290 ] can then be used to adver-
arially train the generative model. Other policy gradient methods can be used as well [ 79 ]. On the
ther hand, the learning signal (i.e., the reward) might be very sparse. A way to solve this issue is
o use inverse RL [ 311 ]. For example, the authors of [ 245 ] use inverse RL to learn a reward function
ble to associate positive rewards to real state-action pairs, and non-positive rewards to synthetic
tate-action pairs. Notably, this can help solve mode collapse too. Another variant is LeakGAN
 107 ]. Here, a hierarchical generator composed of a Manager and a Worker is used. The Worker
roduces a sentence conditioned by a goal vector provided by the Manager. The Worker and the
iscriminative model are trained following SeqGAN; the Manager is trained to predict goal vec-
ors that lead to the identification of advantageous directions in the discriminative feature space.

ore specifically, the Manager receives a feature vector from the discriminator, i.e., its last convo-
utional layer, at each generated token. By means of this leaked information and the hierarchical
rchitecture, LeakGAN produces longer and higher-quality texts. Finally, another possibility is to
se Gumbel-softmax relaxation [ 126 , 177 ], as in Relational GAN (RelGAN) [ 201 ]. Controlled

Ext generation Relational Memory GAN (CTERM-GAN) [ 20 ] builds on the latter by also
onditioning the generator on an external embedding input. In addition, it uses both a syntactic
iscriminator to predict whether a sentence is correct and a semantic discriminator to infer if a
entence is coherent with the external input. 

3.2.3 Applications. GANs have been applied to a variety of practical problems in several appli-
ation scenarios. They have been widely used for semi-supervised learning [ 203 ]; for generating
dversarial examples [ 294 ] to better train image classifiers [ 178 ]; and, in general, in computer vi-
ion (see [ 285 ] for a detailed discussion). The generative power of GANs has also found its place
n recommender systems (see [ 60 ]) to generate fashion items; in science and chemistry [ 185 , 194 ].
f course, its ability to generate high-quality samples has been exploited in many other areas,

rom anime design [ 134 ] and 3D object modeling [ 292 ] to photo-realistic consequences of climate
hange [ 242 ]. Conditional inputs also allow the production of artistic works by controlling stylistic
roperties such as genre [ 266 ] or influencer [ 49 ]. Finally, the most famous example of the artistic
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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ower of GAN is the collection of paintings by Obvious, a French art collective [ 283 ]; one of their
orks has been sold for more than 400,000 dollars. 3 

3.2.4 Critical Discussion. GANs are difficult to evaluate from a machine creativity perspective.
he generator does not receive the original works as input, so it samples from a conceptual space

hat is built only indirectly from them. In rare cases, this can also lead to a different conceptual
pace (with respect to the original one) and so to transformational creativity, but it typically leads
o exploratory creativity. In fact, since the goal is to learn to generate seemingly real artifacts from
 latent distribution, it is likely that it will approximate the real one. Still, it is possible to identify
otential creative solutions among those generated by the model. 
An advantage of GANs is the presence of a recognition network, i.e., the discriminator, trained

o recognize real (valuable) works. This is important for two reasons. It suffices for being able to
efine GANs appreciative [ 52 ], which is a central sub-task of creativity [ 6 , 91 ]. In addition, it allows
s to consider their products as valuable, as it is in a sense their intrinsic objective. However, there

s no guarantee that they will also be new and surprising. Nevertheless, it seems possible to extend
 GAN objective to include such properties as well (see Section 3.8 for a discussion). 

.3 Sequence Prediction Models 

3.3.1 Core Concepts. A sequence prediction model is a generative model that considers genera-
ion as a sequential process. It works in an autoregressive fashion: it predicts the future outcome of
he sequence (i.e., the next token) from the previously observed outcomes of that sequence, usually
y means of an internal state that encodes information from the past. It is trained to minimize the
rediction error for each token in the dataset. At inference time, this simple yet effective approach
nly requires to produce one token after the other, feeding back to the model what has been pro-
uced so far [ 142 ]. It makes it possible to learn dependencies between tokens in real data so that
he same dependencies can be exploited when generating synthetic data. However, this causes the
eneration to be highly dependent on real data, e.g., there is the risk of potentially reproducing
ortions of the training set. 

3.3.2 Examples of Models. Several models have been proposed, most of them based on RNN,
nd especially on long short-term memory (LSTM) [ 119 ]. The reason is that RNNs use internal
tates based on previous computation: inputs received at earlier time steps can affect the response
o the current input. However, RNNs tend to perform worse with longer sequences [ 15 ]. LSTM is a
pecific RNN architecture that addresses the problem of long-term dependencies through the use
f additional gates determining what to remember and what to forget at each step. 
RNNs can be used to model joint probabilities of characters (Char-RNN) [ 142 ]; words [ 213 ];

honemes [ 121 ]; syllables [ 312 ]; and even tokens from transcriptions of folk music (Folk-RNN)
 261 ]. They can also receive conditional inputs like the encoding of the previous lines [ 303 ]. Richer
rchitectures that combine models focusing on different properties can be used to generate more
omplex text, e.g., poetry based on pentameter and rhymes [ 157 ]. Finally, sequence modeling can
lso be combined with reinforcement learning. For example, the authors of [ 129 ] use a Note-RNN
odel (based on single notes) trained using Deep Q-Network [ 191 ]; as rewards, they consider both

he classic loss of sequence prediction models and a reward based on rules of music theory. In this
ay, the model learns a set of composition rules, while still maintaining information about the

ransition probabilities of the training data. The advantages of adopting an RL-based approach are
escribed in Section 3.6 . 
 Fun fact: the sold painting is called Portrait of Edmond De Belamy because Belamy sounds like bel ami , a sort of French 

ranslation of... Goodfellow . 

CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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Due to the difficulties in working with long sequences, results in tasks like narrative generation
re affected by a lack of coherence [ 231 ]. Many approaches have been proposed to address this
roblem. For instance, stories can be generated in terms of events [ 182 ] (i.e., tuples with subject,
erb, object, and an additional wildcard ) by an encoder-decoder RNN (also known as Sequence-to-
equence, see [ 263 ]); events are modeled by another encoder-decoder RNN. Instead of events, it is
lso possible to focus on entities (i.e., vectors representing characters) [ 50 ]. 

Sequence prediction models are also used for domains not commonly modeled as sequences,
ike images. Image modeling can be defined in a discrete way by means of a joint distribution of
ixels: the model learns to predict the next pixel given all the previously generated ones. It starts
t the top left pixel and then proceeds towards the bottom right. The two seminal architectures for
equence prediction of images are PixelRNN and PixelCNN [ 276 ]. The former is a two-dimensional
NN (based on rows or diagonals). The latter is a convolutional neural network (CNN) with
n additional fixed dependency range (i.e., the convolution filters are masked in order to only use
nformation about pixels above and to the left of the current one). To obtain better results, gated
ctivation units can be used in place of rectified linear units between the masked convolutions;
onditional inputs encoding high-level image descriptions can be used as well [ 277 ]. Notably, the
ated PixelCNN architecture can also be used for other types of data: WaveNet [ 275 ] implements it

o generate audio based on the waveform, possibly guiding the generation with conditional inputs.
While intuitive in terms of architecture, RNNs are limited by the vanishing gradient problem

nd non-parallelizability in the time dimension [ 158 ]. Very recent works explore solutions to tackle
hese issues by means of structured state spaces [ 102 ] and a combination of RNNs and Transform-
rs [ 211 ] (see Section 3.4 ). 

3.3.3 Applications. As discussed, sequence prediction models have been used to learn to write
oems or stories (by predicting a character, syllable, or word after the other); to compose music
by predicting a note or a waveform after the other); to draw images (by predicting a pixel after
he other). In general, they can be used for any kind of time series forecasting [ 170 ]. They can also
e used for co-creativity, as in Creative Help [ 231 ]. Despite their simplicity, sequence prediction
odels are one of the most successful generative techniques. An interesting example is Sunspring .

t might be considered as the first AI-scripted movie: it was generated by a Char-RNN trained on
housands of sci-fi scripts [ 187 ]. The quality of the result is demonstrated by the fact that it was
ble to reach the top ten at the annual Sci-Fi London Film Festival in its 48-Hour Film Challenge. 4

3.3.4 Critical Discussion. Sequence prediction models generate outputs that have characteris-
ics of both exploratory and combinatorial creativity. They are based on probabilistic predictions
nd they are able to generate new outputs in the induced space, but they can also reuse sequences
f tokens from different works, combining them together. There is no guarantee that the results
ill be valuable or novel, and classic methods such as RNNs lack surprise [ 35 ]. It is worth not-

ng that the possibility of using conditional inputs and being able to work at different levels of
bstraction might indirectly lead to creative outputs, but creativity should then be attributed to
he higher-level component (or human if the input is provided by the user) that is guiding the
eneration for specific elements and characteristics of the result. 

.4 Transformer-Based Models 

3.4.1 Core Concepts. Transformer-based models are neural networks based on the Transformer
rchitecture [ 281 ]. They represent the main example of foundation models [ 23 ], because of the
 Quite interestingly, the AI that wrote Sunspring declared that its name was Benjamin, probably in honor of Walter Ben- 

amin, the German philosopher who, already in 1935 [ 16 ], understood that new mechanical techniques related to art can 

adically change the public attitude to art and artists. 

ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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eading role they have been assuming in language, vision, and robotics. A Transformer is an archi-
ecture for sequential modeling that does not require recurrent or convolutional layers. Instead,
t only relies on a self-attention mechanism [ 11 ] that models long-distance context without a se-
uential dependency. Each layer consists of multi-head attention (i.e., several self-attention mech-
nisms running in parallel), a feed-forward network, and residual connections. Since self-attention
s agnostic to token order, a technique called positional embedding is used to capture the ordering
 281 ]. 

In principle, a Transformer is nothing more than an autoregressive model: it works by pre-
icting the current token given the previous ones (see Section 3.3 ). However, a few fundamental
ifferences exist. A Transformer can also be trained by means of masked modeling: some of the
nput tokens are randomly masked, and the model has to learn how to reconstruct them from the
ntire context, and not only from the previous portions [ 61 ]. The possibility of dealing with very
ong sequences allows for prompting. By providing a natural language prompt in input, the model
an generate the desired output, e.g., the answer to a question, a class between a set of classes for
 given text, or a poem in a particular style [ 34 ]. This is done by simply passing the prompt in
nput as a text, and then leveraging the model to predict what comes next (e.g., the answer to a
uestion). These advantages, together with the very large amount of data available, the increasing
omputational power, and the parallelism induced by their architecture, have led Transformer-
ased models to become the state of the art for several tasks. Nevertheless, the computational
osts of the architecture from [ 281 ] grow quadratically with the input size. 

3.4.2 Examples of Models. Several Transformer-based approaches have been proposed in re-
ent years. The design of specific Transformers for a variety of applications is presented in several
urveys (e.g., [ 23 , 148 ]) and books (e.g., [ 273 ]). 

The domain mostly influenced by Transformers is natural language processing (NLP) . Bidi-

ectional Encoder Representations from Transformers (BERT) [ 61 ] is a Transformer-based
ncoder trained for both predicting the next sentence (in an autoregressive fashion) and recon-
tructing masked tokens from the context. Several enhanced variations of the original model have
een proposed, such as, for instance, solutions that remove the next-sentence pre-training objec-
ive [ 173 ], use inter-sentence coherence as an additional loss [ 154 ], or employ distillation [ 114 ]
o train a smaller model [ 238 ]. The other main approach is that used by the Generative Pre-

rained Transformer (GPT) family [ 34 , 215 , 218 ]. Here, a Transformer-based decoder is trained
n an autoregressive way by additionally conditioning on the task of interest. After training, it
an be used to perform a wide range of tasks by providing a description or a few demonstrations
f the task. The effectiveness of this text-to-text generative approach has then been explored by
5 [ 220 ]. Many other large language models [ 246 , 269 , 302 ] have been proposed to achieve better
esults by means of more parameters and computation [ 249 ], or more qualitative data [ 106 ]. Mix-
ure of Experts [ 244 ] can be used as well in place of the feed-forward network to train a larger but
ighter model (since only portions of it are used per task), as done by Generalist Language Model

GLaM) [ 70 ]. Finally, Bidirectional and Auto-Regressive Transformer (BART) [ 164 ] ideally
erges together a BERT-encoder (trained by corrupting text with an arbitrary noising function)

nd a GPT-decoder (trained to reconstruct the original text autoregressively). Such an encoder-
ecoder architecture is able to achieve state-of-the-art results in machine translations, as well as
ther text-to-text tasks. 
Transformer-based models have been used in domains different from language modeling

LM) . Few have been proposed for music generation. One of the first examples was Music
ransformer [ 122 ], which can generate one-minute music in Bach’s style with internal con-
istency; another remarkable one is Musenet [ 210 ], which is able to produce 4-minute musical
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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omposition with a GPT-2 architecture; and, finally, it is worth mentioning Jukebox [ 62 ], which
an generate multiple minutes of music from raw audio by training a Sparse Transformer [ 47 ] (i.e.,
 Transformer with sparse factorization of the attention matrix in order to reduce from quadratic
o linear scaling) over the low-dimensional discrete space induced by a VQ-VAE. Conditioning is
lways considered by means of genre, author, or instruments. MusicLM [ 3 ] additionally allows
o generate music from text descriptions by aligning text and audio representation from different
tate-of-the-art models [ 25 , 123 ]. Another important application domain is video-making. Video

ision Transformer (ViViT) [ 8 ] generates videos using classic Transformer architectures;
ideo Transformer (VidTr) [ 306 ] achieves state-of-the-art performance thanks to the stan-
ard deviation-based pooling method; and VideoGPT [ 295 ] does so by learning discrete latent
epresentations of raw video with VQ-VAE, and then training a GPT autoregressively. 

Transformers have been highly influential in computer vision too. The first model was Image
ransformer [ 209 ]. It restricts the self-attention mechanism to attend to local neighborhoods, so

arger images can be processed. Class-conditioned generation is also supported, by passing the em-
edding of the relative class in input. To avoid restricting self-attention to local neighborhoods, Vi-
ion Transformer [ 69 ] divides an image into fixed-size patches, linearly embeds each of them, adds
osition embeddings, and then feeds the resulting sequence of vectors to a standard Transformer
ncoder. Masked Autoencoders (MAE) [ 111 ] instead uses an encoder-decoder architecture based
n Transformers trained with masked image modeling (i.e., to reconstruct randomly masked pix-
ls). A BERT adaptation to images called Bidirectional Encoder representation from Image

ransformers (BEiT) [ 14 ] has also been proposed. Masked image modeling has also been used
ogether with classic autoregressive loss [ 44 ]. Conversely, Vector Quantised-GAN (VQ-GAN)

 78 ] allows a Transformer to be based on vector quantization. A GAN learns an effective code-
ook of image constituents. To do so, the generator is implemented as an auto-encoder; vector
uantization is applied over the latent representation returned by the encoder. It is then possible
o efficiently encode an image in a sequence corresponding to the codebook indices of their embed-
ings. The Transformer is finally trained on that sequence to learn long-range interactions. These
hanges also allow us to avoid quadratic scaling, which is intractable for high-resolution images.
inally, DALL-E [ 216 ] takes advantage of a discrete VAE. To generate images based on an input
ext, it learns a discrete image encoding; it concatenates the input text embedding with the image
ncoding; it learns autoregressively on them. CogView implements a similar architecture [ 65 ]. 

Finally, Transformer-based models have also been used in multimodal settings, in which data
ources are of different types. A survey can be found in [ 264 ]. The first examples of these systems
onsider text and images together as the output of the Transformer architecture. By aligning their
atent representations, images and texts can be generated by Transformer-based decoders given
 multimodal representation. For instance, Contrastive Language-Image Pre-training (CLIP)

 216 ] has an image encoder pre-trained together with a text encoder to generate a caption for
n image. A Large-scale ImaGe and Noisy-text embedding (ALIGN) [ 132 ], based on similar
echanisms, can achieve remarkable performance through training based on a noisier dataset.

n [ 272 ] the authors propose a frozen language model for multimodal few-shot learning: a vision
ncoder is trained to represent each image as a sequence of continuous embeddings, so that the
rozen language model prompted with this embedding can generate the appropriate caption. In [ 80 ]
he authors present Bridging-Vision-and-Language (BriVL) , which performs multimodal tasks
y learning from weak semantic correlation data. Finally, there is a trend toward even more com-
lex multimodal models. For example, Video-Audio-Text Transformer (VATT) [ 4 ] learns to
xtract multimodal representations from video, audio, and text; instead, Gato [ 225 ] serializes all
ata (e.g., text, images, games, other RL-related tasks) into a flat sequence of tokens that is then
mbedded and passed to a standard large-scale language model. Similarly, Gemini [ 93 ] achieves
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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tate-of-the-art performance in multimodal tasks by working on interleaved sequences of text, im-
ge, audio, and video as inputs; [ 94 ] extends it to Mixture-of-Experts setting. Finally, NExT-GPT
 293 ] handles any combination of four modalities (text, audio, image, and video) by connecting a
anguage model with multimodal adaptors and diffusion decoders (see Section 3.5 ). 

3.4.3 Applications. Transformer-based large language models can be used for almost any NLP
ask, including text summarization, generation, and interaction. In order to do so, the model can be
sed as frozen (i.e., to provide latent representations in input to other models); can be fine-tuned for
he specific objective; can be exploited with zero-shot, one-shot or few-shot setting by prompting
he task or few demonstrations in input. Transfer learning can instead be used to perform image
lassification by means of Transformer-based models trained on images. Other domain-specific
echniques can be used as well: for instance, PlotMachines [ 223 ] learns to write narrative para-
raphs not by receiving prompts, but by receiving plot outlines and representations of previous
aragraphs. From a generative learning perspective, Transformers have shown impressive perfor-
ance in producing long sequences of texts and music or speech [ 284 ], as well as in generating

mages based on input text. Their application has not been limited to these data sources. For in-
tance, AlphaFold uses a Transformer architecture to predict protein structure [ 139 ]; RecipeGPT
mploys it to generate recipes [ 160 ]; and GitHub Copilot relies on it to support code development
 45 ]. 

3.4.4 Critical Discussion. Given the fact that the Transformers can be considered as an evo-
ution of sequence prediction models, the observations made for that class of models (see Sec-
ion 3.3 ) apply also to them. However, the inherent characteristics of their architecture allow for
arger models and higher-quality outputs, which are also able to capture a variety of dependencies
f text across data sources. More in general, a broader conceptual space is induced. This means
hat domain-specific tasks might be addressed by means of solutions outside or at the boundary of
he sub-space linked with that domain. Moreover, possibly also through careful use of inputs (see
ection 3.7 ), their adoption might lead to transformational creativity. As far as Boden’s criteria are
oncerned, there is no guarantee that the output of the Transformer architecture would be valu-
ble, novel, or surprising, even though current state-of-the-art large language models (LLMs)

chieve almost human-like performance in creative tests [ 259 , 308 ]. 

.5 Diffusion Models 

3.5.1 Core Concepts. Diffusion models are a family of methods able to generate samples by
radually removing noise from a signal [ 253 ]. The most representative approach is the Denoising

iffusion Probabilistic Model (DDPM) [ 115 ]. An input x 0 is corrupted by gradually adding
oise until obtaining an x T from a pre-defined distribution; the model then has to reverse the
rocess. Each timestep t corresponds to a certain noise level; x t can be seen as a mixture of x 0 with
ome noise ϵ whose ratio is determined by t . The model learns a function ϵθ to predict the noise
omponent of x t by minimizing the mean-squared error. x t −1 is then obtained from a diagonal
aussian with mean as a function of ϵθ (x t , t ), and with a fixed [ 115 ] or learned [ 200 ] variance.

n other words, it learns to associate points from a predefined random distribution with real data
hrough iterative denoising. Because of this, at inference time, a diffusion model can generate a
ew sample by starting from pure random noise. The generation can also be conditioned by simply
odifying the noise perturbation so that it depends on the conditional information. However, this

terative sampling process might potentially lead to slow generation; a proposed solution is to
nduce self-consistency, i.e., ensuring that points on the same trajectory map to the same initial
nes [ 254 ]. In this way, the output can be obtained in a single step. 
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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The aforementioned diffusion process is similar to the one followed by score-based generative
odels [ 255 , 256 ]. Instead of noise, here a model is trained to learn the score, i.e., the gradient of the

og probability density with respect to real data. The samples are then obtained using Langevin
ynamics [ 288 ]. Despite the differences, both of them can be seen as specific, discrete cases of
tochastic Differential Equations [ 257 ]. 

3.5.2 Examples of Models. Diffusion models have been primarily used for image generation. In
rder to generate higher-quality images and to allow text-to-image generation, a variety of effec-
ive methods for conditioning have been proposed. A possibility is to use classifier guidance [ 63 ]:
he diffusion score (i.e., the added noise) includes the gradient of the log-likelihood of an auxiliary
lassifier model. An alternative is classifier-free guidance [ 117 ]: to avoid learning an additional
odel, a single neural network is used to parameterize two diffusion models, one conditional and

ne unconditional; the two models are then jointly trained by randomly setting the class for the
nconditional model. Finally, the sampling is performed using a linear combination of conditional
nd unconditional score estimates. Guided Language to Image Diffusion for Generation and

diting (GLIDE) [ 198 ] demonstrates how classifier-free guidance can be effectively used to gen-
rate text-conditional images. In addition, it shows how diffusion models can be used for image
diting by fine-tuning in order to reconstruct masked regions. Performance improvement can be
btained by means of a cascade of multiple diffusion models performing conditioning augmen-
ation [ 116 ]. Notably, the diffusion model can operate on latent vectors instead of real images.
table Diffusion [ 232 ] employs a diffusion model in the latent space of a pre-trained autoencoder.
imilarly, DALL-E 2 [ 221 ] generates images by conditioning with image representations. At first,
t learns a prior diffusion model to generate possible CLIP image embeddings from a given text
aption, i.e., conditioned by its CLIP text embedding. Then, a diffusion decoder produces images
onditioned by the image embedding. The generation quality can be further improved by means
f generated captions for the images in the training set [ 19 ]. Imagen [ 235 ] uses instead a cascaded
iffusion decoder, together with a frozen language model as a text encoder to increase the quality
f output. 
Although the approach is particularly suitable for images, applications to other data sources

ave been developed as well. DiffWave [ 152 ] and WaveGrad [ 45 ] use diffusion models to gener-
te audio. They overcome the continuous-discrete dichotomy by working on waveform. Another
ossibility is to use an auto-encoder like MusicVAE [ 230 ] to transform the sequence into a set of
ontinuous latent vectors, through which a diffusion model is trained [ 190 ]. Resembling image
enerators, Contrastive Language-Audio Pretraining (CLAP) embeddings [ 75 ] can be used
o generate audio by conditioning on text descriptions [ 171 ]. Diffusion-LM [ 167 ] employs dif-
usion models to write text by denoising a sequence of Gaussian vectors into continuous word
ectors (then converted into discrete words by a rounding step); DiffuSeq [ 96 ] performs sequence-
o-sequence generation tasks by embedding source and target sequences in the same embedding
pace through a Transformer architecture. Diffusion models have been used for 3D generation as
ell [ 199 ]. Finally, diffusion models for video have also been proposed, based on gradient-based

onditioning [ 118 ], and on processing latent spacetime patches. In particular, with respect to the
atter, Sora [ 33 ] first turns videos into sequences of patches and then uses a diffusion Transformer
o predict the original patches from random noise (and conditioning inputs like text prompts),
mproving sample quality and flexibility. 

3.5.3 Applications. Despite their recent introduction, diffusion models have been used to gen-
rate audio, music, and video, as well as to generate and edit images conditioned on input text, e.g.,
ith in-painting [ 174 ] or subject-driven generation [ 234 ]; we refer to [ 298 ] for a comprehensive

urvey of this area. Indeed, they lead to higher-quality outputs than the previous state-of-the-art
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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odels. In particular, DALL-E 2 and Stable Diffusion have been able to produce images from textual
nstructions with superior fidelity and variety. 

3.5.4 Critical Discussion. Diffusion models learn a mapping between real images and a Gauss-
an latent space. Because of this, they are an example of exploratory creativity: they randomly
ample from that space, and then they possibly navigate it in the direction imposed by condi-
ional inputs. There is no guarantee that the results will be valuable, novel, or surprising, even
hough these approaches are able to generate outputs characterized by a high variety. As already
rgued, novelty and surprise may only arise due to the conditioning input (for example, a human
escribing a novel combination of elements), i.e., the model is not imaginative on its own. 

.6 Reinforcement Learning-Based Methods 

3.6.1 Core Concepts. With RL-based methods, we aim to indicate all the generative models
hose training relies on maximizing a reward. These models are based on the architectures in-

roduced so far, e.g., they can be GANs or autoregressive models. The difference is that they are
ot (only) trained to fool the discriminative part or to reduce prediction error. The typical frame-
ork considers the generative model as the agent; each action causes a modification to the current
roduct, i.e., the state; and the agent learns a policy that maximizes the cumulative reward. There-
ore, the reward can be used to impose desired behavior on the generative model. The RL-based
pproach can be implemented for the entire training or for fine-tuning a pre-trained model. The
ampling scheme remains the same and depends on the chosen generative model. 

3.6.2 Examples of Models. A first example is Objective-Reinforced GAN (ORGAN) [ 104 ].
ere, RL is used not only to adapt GANs to sequential tasks but also to provide additional learn-

ng signals, such as rewards from specific-domain objectives (e.g., tonality and ratio of steps for
usic generation). Also [ 299 ] follows this path by using rewards like fluency, coherence, mean-

ngfulness, and overall quality to generate poems. Another possibility is to use the metrics used at
est time (e.g., BLEU or ROUGE) [ 10 , 222 ]. Instead, RL-DUET [ 133 ] casts online music accompani-
ent generation as an RL problem with an ensemble of reward models, i.e., autoregressive models

rained with or without the whole context, and with or without the human-produced counter-
art. In this way, inter-coherence (between humans and machines) and intra-coherence can be
btained. Finally, Intelli-Paint [ 247 ] can paint in human style by using a sequential planner that
earns a painting policy to predict vectorized brushstroke parameters from the current state. 

RL can also be used to fine-tune a pre-trained generative model. Doodle-SDQ [ 309 ] first learns
o draw simple strokes using supervised learning; then, it improves its generation by means of
ewards about similarity, color, and line movement. Conversely, the authors of [ 265 ] suggest to
onsider a pre-trained LSTM language model as a policy model. Fine-tuning then aims at maxi-
izing the probability that a given event occurs at the end of the narrative. RL Tuner [ 130 ] uses RL

o fine-tune a Note-RNN [ 72 ] to produce music that follows a set of music theory rules. To avoid
orgetting note probabilities learned from the data, the probability value returned by a copy of
he pre-trained Note-RNN can be used as an additional reward. Sequence Tutor [ 128 ] generalizes
his idea of learning a policy that trades off staying close to the data distribution while improving
erformance on specific metrics. A comprehensive critical discussion of the rewards for RL-based
enerative models can be found in [ 85 ]. Finally, RL can be used to help models follow human pref-
rences [ 48 ] or feedback. The latter technique is referred to as Reinforcement Learning from

uman Feedback (RLHF) [ 260 ]. For example, ChatGPT [ 206 ] is an interactive version of GPT-3
 34 ] (initially) and GPT-4 [ 207 ] (at the time of writing), fine-tuned to maximize a learned reward
f human values. RLHF improves its conversational skills while mitigating mistakes and biases;
ecause of this, it has become a standard de facto for fine-tuning large language models, e.g., in
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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 270 ]. It is also possible to use AI and not human feedback [ 12 , 159 ]. However, RLHF has some
imitations [ 42 ], and alternative RL-free strategies are increasingly popular (e.g., [ 219 ]). 

3.6.3 Applications. As seen, RL-based models can be used to fully train or fine-tune generative
odels for different tasks; ideally, for any task that could benefit from domain-specific objectives.
his is the case of music and molecule generation [ 104 , 128 ], but also of dialogue generation [ 165 ],

mage generation [ 21 ] and painting [ 124 ]. In addition, the sequential nature of RL can help as well
n all the tasks requiring to deal with new directives during generation (e.g., music interaction).
inally, RLHF can be used to directly optimize models for creative tasks, e.g., poetry [ 208 ]. 

3.6.4 Critical Discussion. The evaluation of the creativity of RL-based models depends on how
he agent is implemented and which rewards are considered. The learned space of solutions de-
ends on the used rewards (and on the pre-training technique in case of fine-tuning). They typi-
ally contain an adversarial signal or a likelihood with respect to the training data; thus, combi-
atorial or exploratory creativity is obtained. However, additional rewards can have the effect of
ransforming that space (see Section 3.8 ). As far as Boden’s criteria are concerned, value is typically
nsured by some qualitative domain-specific reward or by approaching human preferences. This
lso allows us to consider them as appreciative, as discussed in Section 3.2.4 . Novelty and surprise
ight be achieved as well by means of specific rewards; however, this is not the case for current
odels. 

.7 Input-Based Methods 

3.7.1 Core Concepts. The last class of methods we consider in our analysis is not about a dif-
erent generative model. On the contrary, it is about a different way to sample results from (pre-
rained) generative models, namely by means of its inputs. Two different approaches can be used.
he first is about carefully selecting or optimizing the input to a generative model (e.g., the latent
ector or the text prompt) so that to obtain the desired output. The second approach is about opti-
izing the input so that it directly becomes the desired output. They rely on losses that are usually

ased on features learned by neural networks. While the two approaches are technically different,
oth of them aim at obtaining better outputs by exploiting the knowledge of the pre-trained model
hrough the optimization of the inputs. 

3.7.2 Examples of Models. The first approach consists of carefully modifying the input of a
enerative model until the output matches the desired properties. The main example is VQGAN-
LIP [ 58 ]. Given a text description, VQGAN produces a candidate image from a random latent
ector; the vector is then optimized by minimizing the distance between the embeddings of the
escription and the candidate image. Both embeddings are computed using CLIP [ 216 ]. Variants
an be implemented as in Wav2CLIP [ 291 ], where an audio encoder is learned to match the CLIP
ncoders so that VQGAN-CLIP can be used from raw audio; or as in music2video [ 127 ], where
ideos are generated from audio a frame after the other by both minimizing the distance between
ubsequent frames, and the distance between image and music segment embedded by Wav2CLIP.
n addition to the random latent vector, the text or audio description can be optimized as well.
his can be performed by the users through many iterations of careful adjustments, or by means
f an automated procedure. The latter is commonly known as prompt tuning. Prompt tuning is
bout producing prompts via backpropagation; the optimized prompts can then condition frozen
anguage models in order to perform specific tasks without having to fine-tune them [ 162 ]. An
dditional model can also be trained to output the desired prompt [ 163 ]. Finally, image generators
uch as VQGAN can also be exploited in other ways, i.e., with binary-tournament genetic algorithm
 82 ] or more complex evolution strategies [ 267 ]. Another possibility is to optimize the input so that
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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he generated output maximizes a target neuron of an image classifier [ 197 ]. This helps generate
hat that neuron has learned. The desired latent vector can also be produced by an additional
odel [ 196 ]. 
The second approach consists of optimizing the inputs to transform them into the desired out-

uts. DeepDream [ 192 ] generates “hallucinated” images by modifying the input to maximize the
ctivation of a certain layer from a pre-trained classifier. Artistic style transfer is based on the
ame idea. Given an input image and a target image, the former is modified by means of both style
nd content losses thanks to a pre-trained classifier. The content loss is minimized if the current
nd the original input images generate the same outputs from the hidden layers. The style loss is
inimized if the current and target images have the same pattern of correlation between feature
aps in the hidden layers [ 89 ]. Control over results can be improved by considering additional

osses about color, space, and scale [ 90 ]. 

3.7.3 Applications. Input-based methods can be used with any generative model to produce the
esired output. With language models, they can exploit their generality in several specific tasks
ithout fine-tuning them. For instance, prompt tuning can be used by writers for co-creation [ 43 ]
r to force LLMs to brainstorm [ 262 ]. With image generators, they can obtain drawings adherent
o given descriptions, or high-quality but yet peculiar paintings like colorist [ 82 ], abstract [ 267 ]
r alien [ 250 ] artworks. We believe applications to other domains are yet to come. Both types of
nput-based methods can be used not only to produce desired outputs or to transfer styles; they
an also be used to better analyze what is inside the network [ 197 , 205 ]. 

3.7.4 Critical Discussion. Since input-based methods are applied to pre-trained generative
odels, the space of solutions in which they work is the one induced by those models, i.e., the

ommon spaces we can derive from real data. Nonetheless, some techniques may be able to cause
roductions that are outside that space or at its boundaries, i.e., to cause transformational creativ-
ty. This might happen if the model is general, and the output for a specific task is not only sampled
rom the sub-space of solutions for that task (e.g., with prompt tuning over a language model).
nput-based methods are also valuable: the input optimization itself is typically guided by some
ort of qualitative loss. On the other hand, they are not explicitly novel or surprising (although
he results might seem so). However, nothing prevents optimizing the loss in such directions (see
ection 3.8 ). 

.8 Practical Assessment of Creativity-Oriented Methods 

e conclude this analysis of generative models with a discussion of how they might increase their
reativity according to Boden’s definition. We have discussed how the presence of a recognition
odel (e.g., a discriminative model or a reward model) helps ensure the value of the products.

n the same way, novelty and surprise can be fostered by the integration of other components. A
traightforward way to obtain novel and surprising outputs is to train a generative model by means
f novelty and surprise objectives. This is the core idea behind Creative Adversarial Network

CAN) [ 73 , 239 ]. In addition to the classic discriminative signal, i.e., a value loss, the generator
s also trained to optimize a novelty loss. This is defined as the deviation from style norms, i.e.,
he error related to the prediction of the style of the generated image. The sum of the two training
ignals helps the model learn to produce artworks that are different (in style) from the training data.
he same approach has been used to develop a creative StyleGAN, i.e., StyleCAN [ 131 ]. Another,
ery simple way to augment the training signal of a generative model with creativity-oriented
bjectives is by means of RL-based methods. The choice of the reward structure is the fundamental
lement in the design of effective generative reinforcement learning systems. Rewards should teach
he model to generate an output with a high level of novelty and surprise. An example is ORGAN
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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 104 ], where appropriate reward functions can be used. For instance, statistical measures (e.g.,
hi-squared) or metrics of distance between distributions (e.g., KL divergence) might be used to
round ideas of novelty and surprise. 

Another possibility is the development of an input-based method where the input is optimized
o obtain a product that is valuable, novel, and surprising. This may be achieved either by forcing a
urther exploration of the latent space (e.g., by means of evolutionary search [ 81 ]), or by defining
ppropriate loss functions to perform gradient descent over the input. All these methodologies
re also called active divergence [ 18 ] since they aim to generate in ways that do not simply re-
roduce training data. A survey on active divergence can be found in [ 30 ]. A different output can
lso be obtained by carefully altering the probability distribution of the model, e.g., by scaling its
robabilities with learned functions to maximize target properties [ 59 , 251 , 297 ]. 
A different approach is followed by the Composer-Audience architecture [ 35 ]. Two models are

onsidered: the Audience, a simple sequence prediction model trained on a given dataset; and the
omposer, another sequence prediction model trained on a different dataset. In addition, the Com-
oser also receives the next-token expectations from the Audience, and it learns when to follow

ts guidance and when to diverge from expectations, i.e., when to be surprising. For instance, it
an learn to produce jokes by considering non-humorous texts to train the Audience, and humor-
us texts to train the Composer. Even though this approach is useful for learning how to generate
aluable and surprising output, it is only applicable when paired datasets are available. 

As far as the type of creativity is concerned, there can be ways to achieve a better exploration or
ven transformation of the space of solutions. For example, since CAN novelty loss is used during
raining, it learns to diverge from the distribution of real data. The same is true for RL-based meth-
ds with novelty and surprise rewards (especially if the training happens from scratch). Finally, a
ore explored or transformed space may be reached using RL-based methods driven by curiosity

 36 ]: an agent can learn to be creative and discover new patterns thanks to intrinsic rewards to
easure novelty, interestingness, and surprise. This can be done by training a predictive model of

he growing data history and by using its learning progress as the reward. In this way, the agent
s motivated to make things the predictor does not yet know. If an external qualitative reward
s considered as well, the agent should in theory learn to do things that are new, but still valu-
ble [ 240 ]. The same idea can also be applied to different techniques like evolutionary strategies
 176 ]. Deep Learning Novelty Explorer (DeLeNoX) [ 168 ] uses a denoising autoencoder to learn
ow-dimensional representations of the last generated artifacts. Then, a population of candidate
rtifacts (in terms of their representation) is evolved through a feasible-infeasible novelty search
 169 ] in order to maximize the distances between them, i.e., to increase their novelty, while still
onsidering qualitative constraints. Other evolutionary strategies might be considered as well to
earch the space of artifacts for novel [ 161 ] and surprising [ 100 ] results. Instead of relying on man-
ally crafted metrics, Quality Diversity through Human Feedback (QDHF) [ 64 ] uses human
eedback for computing quality and distance in learned latent projection for computing diversity.
uality-Diversity through AI Feedback (QDAIF) [ 28 ] makes the model more independent in

earching and innovating by totally relying on its own feedback for both quality and diversity. 
Table 1 summarizes all the generative approaches discussed in this section, highlighting their

haracteristics from a machine creativity perspective. 

 CREATI VIT Y MEASURES 

n this section, we present different methodologies to evaluate the creativity of artifacts generated
y artificial agents. These can typically be extended to human-generated artifacts. For each of
hem, we explore the core concepts, the dimensions of creativity that are considered, the evaluation
rotocol, and, finally, we critically assess them. The presence of several different proposals can be
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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Table 1. Summary of all the Methods Explained so far, Considering their Type of Creativity as 

Discussed in the Corresponding Subsections; the Possible Presence of Boden’s Criteria 

( � if Induced by the Training Process; ∼ if not Considered; × if Excluded); and 

Some Practical Suggestions to Achieve a Higher Degree of Creativity 

Generative family Type of creativity Boden’s criteria Creative suggestions 

VAE Exploratory 

∼ Value 
∼ Novelty 

∼ Surprise 

Creativity-oriented 

input-based methods 

GAN Exploratory 

� Value 
∼ Novelty 

∼ Surprise 

CAN; 
Creativity-oriented 

input-based methods 

Sequence prediction 

model 
Combinatorial, 

Exploratory 

∼ Value 
∼ Novelty 

× Surprise 

Composer-Audience; 
Creativity-oriented 

RL-based methods 

Transformer-based 

models 

Combinatorial, 
Exploratory, 

Transformational 

∼ Value 
∼ Novelty 

× Surprise 

Creativity-oriented 

prompt tuning or 
RL-based methods 

Diffusion models Exploratory 

∼ Value 
∼ Novelty 

∼ Surprise 

Creativity-oriented 

input-based methods 

RL-based methods 
Combinatorial, 

Exploratory, 
Transformational 

� Value 
∼ Novelty 

∼ Surprise 

Intrinsic rewards; 
Novelty-based rewards 

Input-based 

methods 
Exploratory, 

Transformational 

� Value 
∼ Novelty 

∼ Surprise 

Evolutionary search; 
Novelty-based 

optimization 
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ssociated with the fact that it is not always straightforward to determine the ‘‘right’’ question
o ask in an evaluation of a creative artifact [ 88 ]. For instance, the Generation, Evaluation, and

etrics (GEM) Benchmark for natural language generation [ 92 ] does not contain any creativity
valuation measure. This is due to the inadequacy of the creative metrics proposed to date to
orrectly capture and measure all the necessary dimensions of creativity. The focus of our overview
s on measures that are based on (or associated with) machine learning techniques. It is worth
oting that some of them might be calculated without using machine learning, but we will refer to
n implementation based on the latter. For an in-depth overview of creativity measures not strictly
elated to machines, we refer to [ 236 ]. Table 2 reports all the evaluation methods considered in this
ection, highlighting the dimensions they try to capture, their applicability, and their limitations.
e will discuss these aspects in the remainder of this section. 

.1 Lovelace 2.0 Test 

4.1.1 Overview. The Lovelace Test (LT) [ 29 ] was proposed in 2001 as a creativity-oriented al-
ernative to the world-famous Turing test [ 274 ]. More formally, LT is defined as follows: 

Definition 4.1. An artificial agent A, designed by H , passes LT if and only if: 
(1) A outputs o ; 
(2) A’s outputting o is not the result of a fluke hardware error but of processes A can repeat; 
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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Table 2. Summary of Creativity Evaluation Methods and their Characteristics 

Name What evaluates How evaluates Applicability Limits 

Lovelace 2.0 
Test 

Evaluators’ 
creativity 
definition 

Mean number of 
challenges per evaluator 

General 
• Requires a substantial 

human intervention 

Ritchie’s criteria 
Quality, novelty, 

typicality 

Human opinions (then 
elaborated through 18 

criteria) 
General 

• Requires human evaluation 
• Requires to state thresholds 
• No innovation definition 

FACE 
Tuples of 

generative acts 

Volume of acts, number of 
acts, quality (through 

aesthetic measure) 
General 

• Abstract method 
• Definition of aesthetic 

measure left to the user 

SPECS 
What we state 

creativity is 

Identification and test of 
standards for the creativity 

components 
General 

• More a framework for eva- 
luation method definition 
than a real method 

Creativity 
implication 
network 

Value, novelty 

Similarity between works 
(considering subsequent 
works for value and pre- 
vious works for novelty) 

General 

• Not possible to accurately 
measure the creativity of the 
most recent works 

• Wrong creativity and 
time-positioning correlation 

Chef Watson 
(assessment 
part) 

Novelty, quality 
Bayesian surprise, smell 
pleasantness regression 

Specific 
(recipes) 

• Requires human ratings of 
pleasantness 

DARCI Art appreciation 
Neural network to 

associate image features 
and description 

Specific 
(visual art) 

• Not based on product 
• Considers just one of the 

creative tripod 

PIERRE - 
Evaluation part 

Novelty, quality 
Count of new combi- 
nations; user ratings 

Specific 
(recipes) 

• Requires user ratings over 
ingredients 

EVE’ 
Feelings, 
meanings 

Negative log of prediction 
and posterior probability 

General 
• Requires a way to explain 
• Value only through meaning 

Common model 
of creativity for 
design 

Novelty, value, 
surprise 

K-Means on a description 
space and a performance 
space; degree of violation 

of anticipated patterns 

Specific 
(design) 

• Requires to define 
attribute-value pairs 

• Requires to define clustering 
parameters 

Unexpectedness 
Novelty, sur- 
prise, trans- 
formativity 

Possibility to update, and 
degree of violation of 

expectations 
General • Does not take care of value 

Essential 
criteria of 
creativity 

Value, novelty, 
surprise 

Sum of performance va- 
riables, distance between 
artifacts and between real 

and expected artifact 

General 

• Requires to define 
performance variables 

• Requires to define clustering 
parameters 

Computational 
metrics for 
storytelling 

Novelty, rarity, 
recreational 

effort, surprise 

Distance between do- 
minant terms, consecutive 
fragments/clusters of terms 

Specific 
(storytelling) 

• Requires to define 
domination 

• Requires to define clustering 
parameters 

 

p

 

r  

2

 

l

(3) H (or someone who knows what H knows, and has H ’s resources) cannot explain how A
roduced o by appealing to A’s architecture, knowledge-base, and core functions. 

LT provides several insights for understanding and quantifying machine creativity, but it is
ather abstract. For these reasons, a 2.0 version has been proposed [ 228 ]. The so-called Lovelace
.0 Test is defined as: 

Definition 4.2. Artificial agent A is challenged as follows: 
(1) A must create an artifact o of type t ; 
(2) o must conform to a set of constraints C where c i ∈ C is any criterion expressible in natural

anguage; 
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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(3) a human evaluator h , having chosen t and C , is satisfied that o is a valid instance of t and
eets C; 
(4) a human referee r determines the combination of t and C to not be unrealistic for an average

uman. 

4.1.2 Dimensions of Creativity Considered. Since the evaluation depends on the tests performed
y human evaluators, the dimensions of creativity considered by it might vary greatly. This allows
or considering value, novelty, and surprise, as well as domain-specific dimensions. 

4.1.3 Protocol for Evaluation. The Lovelace 2.0 Test can be used to quantify the creativity of an
rtificial agent - by means of its artificial productions - considering a set H of human evaluators.
ith n i as the first test performed by evaluator h i ∈ H not passed by the agent, the creativity

f the artificial agent can be expressed as the mean number of challenges-per-evaluator passed:

i 
(n i )
| H | 

. 

4.1.4 Critical Examination. This methodology represents an effective way to measure creativity
ince it is ideally applicable to any field and it is quantitative. Although the latter is not based on
achine learning, it may be used in principle for performing (some of) the tests. However, this
ethodology requires considerable human intervention in order to define all the tests. 

.2 Ritchie’s Criteria 

4.2.1 Overview. Ritchie’s Criteria [ 229 ] is a set of criteria for evaluating the extent to which a
rogram has been creative (or not) in generating artifacts. These criteria are based on three main
actors: novelty, quality, and typicality. [ 229 ] contains a proposed series of criteria, but according
o the authors they should only be intended as a “repertoire”. 

4.2.2 Dimensions of Creativity Considered. Ritchie’s Criteria are based on three factors: quality,
ypicality, and novelty. Quality measures how much an item is a high-quality example of its genre.
ypicality measures how much an item is an example of the artifact class in question. Novelty
easures the dissimilarity of an item with respect to existing examples in its class. Quality and

ypicality are collected using human opinions about the produced artifacts or using “measurable”
haracteristics about, for instance, syntax and metric (for poetry generator). On the other hand,
ovelty is intended as the sum of “untypicality” (the opposite of typicality) and innovation. 

4.2.3 Protocol for Evaluation. The computation of the criteria is based on the analysis of the
esult set of produced artifacts, along with the inspiring set (composed by artifacts of that field
sed during training and/or generation). It also requires the definition of quality and typicality

ndicators for the artifacts considered. More specifically, the proposed criteria are: the average of
ypicality or quality over the result set; the proportion of items with good typicality score, which
s also characterized by high quality; the proportion of the output that falls into the category of
ntypical but high-valued; the ratio between untypical high-valued items and typical high-valued

tems; the proportion of the inspiring set that has been reproduced in the result set. The assessment
f these criteria is performed on both the entire result set and on the subset that does not contain
ny item from the inspiring set. 

4.2.4 Critical Examination. These measures represent a promising way to evaluate creativity,
ut their application is not straightforward. In fact, they do not clearly specify how to measure
ovelty in terms of innovation. Furthermore, all measures require a large number of thresholds
o be set (and the results are very sensitive to such thresholds [ 212 ]). The criteria for the selec-
ion of these thresholds are not trivial per se. It is difficult to identify a general methodology for
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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etting these values. Finally, the collection of correct human opinions (in terms of consistency of
easurement methodology, audience selection, etc.) is not a trivial task either. 

.3 FACE 

4.3.1 Overview. In [ 54 ] the authors introduce FACE as a descriptive model of the creative act
f artificial systems. A creative act is considered a non-empty tuple of generative acts. FACE is
esigned to provide assessors with both quantitative and qualitative evaluations. 

4.3.2 Dimensions of Creativity Considered. While FACE can be used to evaluate a product as
he consequence of a creative act, its focus is on the process. The qualitative evaluation is therefore
eft to the aesthetic function; the dimensions considered depend in turn on how it has been defined
or generated). 

4.3.3 Protocol for Evaluation. More specifically, the FACE model considers a creative act as a
on-empty tuple of generative acts of eight possible types: an expression of a concept, i.e., an in-
tance of an (input, output) pair produced by the system; a method for generating expressions of a
oncept; a concept; a method for generating concepts; an aesthetic measure; a method for gener-
ting aesthetic measures; an item of framing information, i.e., a piece of additional information or
escription regarding the generative act; a method for generating framing information. It is then
ossible to use it in a quantitative way (how many acts are produced); in a cumulative way (how
any types of acts are considered); and in a qualitative way (by means of the aesthetic measure

aken into consideration). 

4.3.4 Critical Examination. The FACE model represents a very comprehensive set of concepts
nd methodologies for assessing machine creativity. However, one of the most challenging aspects
f FACE is the definition of the aesthetic measure, which is not specified; potentially, it might be
efined by the system itself, counting as a potential creative act. This may award systems per-
orming self-evaluation, i.e., guiding their generation based on learned objectives. This in theory
ight mean the systems are incentivized to develop their own tastes, which is an important part

f human creativity. 

.4 SPECS 

4.4.1 Overview. The Standardized Procedure for Evaluating Creative Systems (SPECS)

 136 ] is a framework for the evaluation of creative systems, which can easily be adapted to many
ifferent potential domains. The framework is based on the definition of fourteen “components”
sed to evaluate machine creativity. 

4.4.2 Dimensions of Creativity Considered. The 14 key components of SPECS are: active in-
olvement and persistence; dealing with uncertainty; domain competence; general intellect; gen-
ration of results; independence and freedom; intention and emotional involvement; originality;
rogression and development; social interaction and communication; spontaneity/subconscious
rocessing; thinking and evaluation; value; and variety, divergence, and experimentation. How-
ver, SPECS does not restrict researchers to use all of them; moreover, domain-specific components
an be added as well. 

4.4.3 Protocol for Evaluation. SPECS is composed of three steps. The first one requires provid-
ng a definition of creativity that the system should satisfy, using the suggested components, and
otentially other domain-specific ones. The second requires to specify the standards for evaluat-

ng such components. The third requires to test the system against the standards and report the
esults. 
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 



283:22 G. Franceschelli and M. Musolesi 

 

a  

d  

I  

a  

s  

u  

o  

i  

l  

w

4

 

c  

b  

i  

b  

a

 

v  

b

 

s  

c  

u  

a  

(

 

d  

u  

d  

o  

o  

p  

c  

a  

s  

s  

l  

i

4

 

o  

a  

A

4.4.4 Critical Examination. This is an effective framework for working with computational cre-
tivity, but it cannot be considered as a practical evaluation method. Its effectiveness is strongly
ependent on which components are considered and how they are evaluated for each specific task.
n [ 137 ] the author discusses how SPECS satisfies Ritchie’s criteria and it is more comprehensive
nd expressive than the FACE model and the creative tripod [ 52 ] (according to which a creative
ystem should exhibit skills, appreciation, and imagination) in a meta-evaluation test. They also
se a human opinion survey based on five criteria: correctness, usefulness, faithfulness (as a model
f creativity), usability (of the methodology), and generality. SPECS is evaluated considering music
mprovisation generators; it is also judged by the developers of the generative systems. In particu-
ar, the authors show that SPECS can help obtain additional insights into how a generative model
orks and how it can be improved. 

.5 Creativity Implication Network 

4.5.1 Overview. A different method of quantifying creativity is based on building an art graph
alled Creativity Implication Network [ 74 ]. Given a set of artworks, a directed graph can be defined
y considering a vertex for each artwork. More specifically, an arc connecting artwork p i to p j is
nserted if p i has been created before p j . A positive weight w i j quantifying the similarity score
etween the two artworks under consideration is associated with each arc. The creativity of an
rtwork is then derived by means of computations on the resulting graph. 

4.5.2 Dimensions of Creativity Considered. This method captures both value and novelty. The
alue is defined as the influence on future artworks. The novelty is defined as the dissimilarity
etween the artwork and the previous ones. 

4.5.3 Protocol for Evaluation. The derivation of the Creativity Implication Network requires a
imilarity function to compute the similarity scores; its definition is left to the researchers, but it
an be based on ML techniques (as in the original paper, where computer vision techniques were
sed). Given the network, the creativity of artwork p i depends on the similarity with the previous
rtworks (the higher the similarity, the lower the creativity) and with the subsequent artworks
the higher the similarity, the higher the creativity). 

4.5.4 Critical Examination. The Creativity Implication Network represents an effective way to
eal with the creativity of sets of artworks. It considers both value and novelty, and it allows for
sing automated techniques in the computation of similarity. On the other hand, two potential
rawbacks should be highlighted. The first one is related to artworks that occupy the position
f “leaves” in the graph: if there are no subsequent works in the graph, their creativity would
nly be based on novelty, and not on value. The second one is more subtle, and it is about time-
ositioning. As demonstrated by [ 74 ], moving back an artwork has the effect of increasing its
reativity; however, this appears conceptually wrong. As discussed in [ 22 ], the time location of
n artwork is fundamental in the quantification of its creativity. It may happen that, due to the
urprise component of creativity, an artwork that appears too early might not be considered as
urprising because observers are not able to truly understand it; on the contrary, if it appears too
ate , it might be considered as obvious and not surprising at all. In conclusion, even if this approach
s able to correctly capture value and novelty, it cannot capture the concept of surprise. 

.6 Generate-and-Test Setting 

4.6.1 Overview. Generate-and-test setting [ 268 ] is a family of methods based on the separation
f the generative process into two phases: generation and evaluation. First, the system gener-
tes a candidate artifact. Then, it evaluates its degree of creativity and outputs the artifact if the
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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valuation is passed. For example, the authors of [ 280 ] use this approach to develop a computa-
ional creativity system for generating culinary recipes and menus called Chef Watson. [ 55 ] de-
cribes an augmentation of Painting Fool [ 53 ] with Digital ARtist Communicating Intention

DARCI) [ 202 ] in a generate-and-test setting (i.e., by using The Painting Fool for generation, and
ARCI for evaluation). Pseudo-Intelligent Evolutionary Real-time Recipe Engine (PIERRE)

 193 ] is also based on two models, one for generating recipes with a genetic algorithm, and one
or evaluating them. 

4.6.2 Dimensions of Creativity Considered. The dimensions of creativity considered depend on
he specific implementation of the evaluation function. Different evaluation functions have been
esigned to evaluate, for example, quality and novelty [ 193 , 280 ] and art appreciation [ 55 ]. It is
orth noting that, given the generality of the approach, other evaluation functions could be de-

igned to capture other aspects of machine creativity. 

4.6.3 Protocol for Evaluation. The evaluation protocol strictly depends on the specific imple-
entation of the evaluation. For instance, Chef Watson [ 280 ] uses two measures: flavorfulness

or quality, and Bayesian surprise for novelty. Flavorfulness is computed by means of a regression
odel, built on olfactory pleasantness considering its constituent ingredients. Bayesian surprise

 13 ] is a measure of surprise in terms of the impact of a piece of data that changes a prior distri-
ution into a posterior distribution, calculated applying Bayes’ theorem. The surprise is then the
istance between the posterior and prior distributions. It is worth noting that it has been demon-
trated that there exists a mathematical limit in the maximization of quality and novelty when
ovelty is expressed in terms of Bayesian surprise [ 279 ]. On the other hand, The Painting Fool
 53 ] uses DARCI [ 202 ] in place of the evaluation function. DARCI is able to make associations
etween image features and descriptions of the images learned using a series of NNs as the basis
or the appreciation. It has therefore been used as a sort of artificial art critic to complement The
ainting Fool, allowing it to assess the validity of its own creations. Finally, PIERRE [ 193 ] evalu-
tes the generated recipes again using novelty and quality. Novelty is computed by counting new
ombinations of ingredients used. Quality is based on two NNs that perform a regression of user
atings based on the amount of different ingredients, working at two levels of abstraction. 

4.6.4 Critical Examination. The advantage of the generate-and-test setting is that a variety of
valuation functions can be defined. This allows, for instance, to evaluate the generative system
y means of Boden’s three criteria, while still considering the specific characteristics of the do-
ain of interest. However, its applicability is not general: as we have seen in the previous section,
any generative systems do not follow the proposed setting (e.g., input-based methods use the

valuation to guide the generation, thus merging the two stages). 

.7 Atoms of EVE’ 

4.7.1 Overview. [ 39 ] proposes an approach to measure aesthetic experience called Atoms of
VE’, which is based on a probabilistic model of the world to derive expectations and explanations.
he authors state that aesthetic arises in two ways: by forming E ( expectation ) while avoiding V
 violation ); and by forming E’ ( explanation ) while resolving V. 

4.7.2 Dimensions of Creativity Considered. Even if not explicitly considered, the three ground-
ng concepts of Atoms of EVE’ strongly intertwine with creativity. Expectation is close to value: it

easures how much we are able to understand the object of interest. Violation is close to surprise:
t is the unexpectedness of an object at a certain moment. Explanation is again close to value: it

easures intelligibility (i.e., its usefulness). These same considerations have been expressed by
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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 40 ], where the author uses EVE’ to define a creativity measure based on feelings (i.e., surprise),
omputed by means of violation, and meanings (i.e., value), computed by means of explanation. 

4.7.3 Protocol for Evaluation. Expectation is computed as the posterior probability after the
ccurrence of a given object: it measures how much the prior belief can help explain that object.
iolation is instead computed as the unexpectedness of that object. Together with apprehension,
hich is the unpredictability of the next object (before seeing it), violation returns the tension ,
ne of the two fundamental measures of aesthetics. Finally, explanation measures how much the
ncountered violation can be explained by the posterior belief. Together with expectation, expla-
ation returns a quantification of pleasure , the other fundamental measure of aesthetics. 

4.7.4 Critical Examination. As observed before, while such a computation for surprise is com-
on, this is not true for value. The focus on explanation provides an interesting way to mathe-
atically define value. However, value is not only about finding meaning but also about utility,

erformance, and attractiveness [ 179 ]; this is not possible through this measure. Finally, novelty
s not considered. 

.8 Common Model of Creativity for Design 

4.8.1 Overview. The authors of [ 180 ] propose a model to evaluate creativity in the specific do-
ain of design. They consider creativity as a relative measure in a conceptual space of potential

nd existing designs. Designs are represented by attribute-value pairs; and novelty, value, and sur-
rise capture different aspects of creativity in their space. A similar approach is at the basis of
he regent-dependent model [ 86 ], according to which artifacts are described through sets of pairs
ith a regent (i.e., an action or an attribute) and a dependent (i.e., the specific target or value of

he regent). 

4.8.2 Dimensions of Creativity Considered. The model proposed by [ 180 ] considers all three di-
ensions suggested by [ 22 ], i.e., novelty, value, and surprise. Novelty is considered as a matter of

omparing objects in a descriptive space; it is the degree of difference. Value is related to perfor-
ance, i.e., utility preferences associated with the attributes of an object. Finally, surprise is linked

o violated expectations. 

4.8.3 Protocol for Evaluation. The model is based on the analysis of the conceptual space of po-
ential and existing designs defined by all the potential attribute-value pairs. Novelty is evaluated
ith respect to a description space, i.e., by considering each product as the set of its descriptive

ttributes. Value is considered with respect to a performance space, i.e., by considering attributes
hat have utility preferences associated to them. Finally, surprise is based on finding violations of
atterns that are possible to anticipate in the space of both current and possible designs. The K-
eans clustering algorithm is used to organize known designs by means of their attributes. Then,
ovelty, value, and surprise measures of a new design are obtained by looking at the distance to
he nearest cluster centroid. 

4.8.4 Critical Examination. Even if it explicitly targets the design domain, this approach is able
o combine the three dimensions of creativity by Boden. Nonetheless, it is limited by the fact
hat artifacts have to be described through an attribute-value pair representation. In particular, a
arge number of features might be needed. Otherwise, we might lose aspects of the artifacts that
re fundamental to correctly quantify creativity. Since it is not possible to know the fundamental
eatures in advance, the method requires one to enumerate as many features as possible. However,
he risk is to define an excessive number of non-informative attributes, making the computation of
he metrics too computationally expensive. In fact, the data points become increasingly “sparse”
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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s dimensionality increases; many techniques (especially clustering) are based on distance, and
herefore they may suffer from the curse of dimensionality [ 258 ]. Finally, as for classic machine
earning techniques, there is the need to manually define and extract the chosen features from
nstructured data, which is a time-consuming and potentially prone-to-error activity. A possible
ay to overcome the problems related to feature extraction and the curse of dimensionality might
e to adopt deep learning techniques, given their effectiveness with unstructured data. 

.9 Unexpectedness Framework 

4.9.1 Overview. The authors of [ 99 ] suggest that a framework of unexpectedness (i.e., viola-
ion of an observer’s expectations) can deal with novelty, surprise, and domain transformation
also called transformativity). Although they do not claim it can be a measure of creativity on its
wn, and that value should be added as well, they suggest it can become a vital component in
omputational creativity evaluation. 

4.9.2 Dimensions of Creativity Considered. The authors of [ 99 ] suggest that unexpectedness can
e used to compute three dimensions of creativity: novelty, surprise, and transformativity. Indeed,
ovelty is about the possibility of violating the observer’s expectations about the continuity of a
omain; if the current model of belief is not applicable to the current artifact, it can be considered
ovel. Surprise is instead about the possibility of violating the observer’s expectations about an
rtifact. Finally, transformativity is about the possibility of violating the observer’s expectations
bout the conceptual space itself (i.e., finding that the rules governing it were not accurate). 

4.9.3 Protocol for Evaluation. The unexpectedness framework should allow one to model ex-
ectation. Notably, expectation should be linked with the socio-cultural context of the observer,
ince it is the observer that forms expectation, not the domain itself. In particular, an expectation
s generated by a prediction about the predicted (i.e., the dependent variables of the artifact) given
 condition (i.e., a relationship between the predicted property and some other property of the ob-
ect) that applies within a scope (i.e., the set of possible artifacts to which the expectations apply).
n observation that falls within that scope can then be measured for congruence with respect to

hat expectation. 

4.9.4 Critical Examination. The unexpectedness measure appears to be able to provide re-
earchers and practitioners with a way to derive novelty and surprise. Notably, it also captures
ransformativity, clarifying at the same time how simple surprise differs from it, i.e., that surprise
s related to expectations about a single artifact, while transformativity is related to expectations
bout the entire domain. However, it requires defining its conceptual space in terms of explicit
ules, which can be violated (and in a way that allows a violation to be detected). In addition, it
oes not include value in the assessment of machine creativity. 

.10 Essential Criteria of Creativity 

4.10.1 Overview. The metric proposed by [ 179 ] is based on three components: novelty, value,
nd surprise. It relies on the idea that a creativity metric has to be independent not only from the
omain but also from the producer. 

4.10.2 Dimensions of Creativity Considered. The criteria of creativity defined by [ 179 ] cover
xactly Boden’s three criteria. In particular, novelty is intended here as a measure of how different
he artifact is from known artifacts in its class. Value is quantified by considering how the poten-
ially creative artifact compares in utility, performance, or attractiveness to other artifacts in its
lass. Finally, unexpectedness is defined as the variation from expectation developed for the next
ew artifact in its class. 
ACM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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4.10.3 Protocol for Evaluation. Novelty is calculated as the distance between the artifact of in-
erest and the other artifacts in its class. The partition into classes is obtained by means of a clus-
ering algorithm. Surprise is calculated by considering whether or not the artifact agrees with
he expected next artifact in the pattern extracted from recent artifacts. More specifically, it is
alculated as the difference between the expected next artifact and the real next artifact. Such a
attern is predicted by a self-supervised neural network; predictions are refined using reinforce-
ent learning to correct the learned trajectory in case of sequential data. Finally, value is calcu-

ated as the weighted sum of the performance variables of the artifact. The weights depend on a
o-evolutionary algorithm with a fitness function that can change over time in case the current
opulation of artifacts changes. 

4.10.4 Critical Examination. The method considers all three of Boden’s criteria; it is not linked
o a specific domain, or the producer itself; it deals with the evolution of creativity, capturing its
olatile nature at the same time. However, in our opinion, it is limited in terms of applicability
y the fact that it requires the definition of performance variables (similarly to other approaches
ased on attribute-value pairs, see Section 4.8.4 ). Moreover, the setting of the parameters of the
lustering algorithms at the basis of this method and the definition of distances among artifacts
equire human fine-tuning. 

.11 Computational Metrics for Storytelling 

4.11.1 Overview. For the specific case of storytelling, the authors of [ 141 ] propose a set of com-
utational metrics to compute the evaluation of novelty, surprise, rarity, and recreational effort. 

4.11.2 Dimensions of Creativity Considered. Novelty and surprise are evaluated according to
he standard Boden’s definition, while rarity is intended as the presence of rare combinations of
roperties and recreational effort as the difficulty in achieving a specific result. 

4.11.3 Protocol for Evaluation. Novelty is computed as the average semantic distance between
he dominant terms included in the textual representation of the story, compared to the average
emantic distance of the dominant terms in all stories. Surprise is computed as the average seman-
ic distance between the consecutive fragments of each story. Rarity is computed as the distance
etween the individual clusters of each term in each story and those in the story set. Finally, recre-
tional effort is computed as the number of different clusters each story contains. 

4.11.4 Critical Examination. Although value is not considered, the proposed metrics appear to
e appropriate to evaluate novelty and surprise. Nonetheless, they suffer from two problems: they
re intrinsically domain-specific and they require that all the types of clusters are defined correctly,
hich is very difficult to ensure in practice. 

 OUTLOOK AND CONCLUSION 

n this survey, we have provided the reader with an overview of the state of the art at the in-
ersection between creativity and machine learning. Firstly, we have introduced the concept of
achine creativity, including key concepts and definitions. Secondly, we have described a variety

f generative learning techniques, considering their potential applications and limitations. Finally,
e have discussed several evaluation frameworks for quantifying machine creativity, highlighting

heir characteristics and the dimensions they are able to capture. 
Even if the field of machine creativity has witnessed increasing interest and popularity in recent

ears, there are still several open challenges. First of all, an interesting direction is the exploration
f creativity-oriented objective functions, to directly train models to be creative or to navigate
he induced latent space to find creative solutions. Another open problem is the definition of
CM Comput. Surv., Vol. 56, No. 11, Article 283. Publication date: June 2024. 
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echniques to explore or transform the space of solutions. A fundamental area is the definition
f novel and robust evaluation techniques for both generated and real artifacts. As discussed in
ection 4 , deep learning might be used as a basis for the definition of metrics for machine creativ-
ty. It should be noted that there is also an ongoing debate about the role of human versus machine
valuation [ 153 ]. Another promising research direction concerns the machine interpretation of art
 1 ]. Moreover, machine learning techniques might also be used to investigate psychological dimen-
ions of creativity [ 2 ]. There are also foundational questions related to generative deep learning
nd copyright [ 84 ]. For example, it is not clear if machine-generated works could be protected
y Intellectual Property, and, if they are, who should be the owner of the related rights [ 237 ]. In
ddition, other problems concerning copyright should be considered, such as if and when training
ver protected work is permitted [ 252 ]. Another important ongoing debate is about authorship
nd the human role in creative fields in the era of AI. 5 

The models and frameworks discussed in this work show the remarkable potential of genera-
ive learning for machine creativity. We hope that this survey will represent a valuable guide for
esearchers and practitioners working in this fascinating area. 
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