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ABSTRACT
Validation of mobile ad hoc network protocols relies almost
exclusively on simulation. The value of the validation is,
therefore, highly dependent on how realistic the movement
models used in the simulations are. Since there is a very
limited number of available real traces in the public domain,
synthetic models for movement pattern generation must be
used. However, most widely used models are currently very
simplistic, their focus being ease of implementation rather
than soundness of foundation. As a consequence, simula-
tion results of protocols are often based on randomly gen-
erated movement patterns and, therefore, they may differ
considerably from those that can be obtained deploying the
system in real scenarios. Movement is strongly affected by
the needs of humans to socialise or cooperate, in one form
or another. Fortunately, humans are known to associate in
particular ways that can be mathematically modelled and
that have been studied in social sciences for many years. It
is in fact undeniable that social relationships definitely bias
movement patterns.

In this paper we propose a new mobility model that is
founded on social network theory. The model allows col-
lections of hosts to be grouped together in a way that is
based on social relationships among the individuals. This
grouping is only then mapped to a topographical space, with
movements influenced by the strength of social ties that may
change in different periods of the day. We have validated our
model with real traces by showing that the generated mo-
bility traces can be considered a very good approximation
of human movement patterns. We have also run simulations
of AODV and DSR using this mobility model and show how
the delivery ratio is affected by this type of mobility.

1. INTRODUCTION
The definition of realistic mobility models is one of the

most critical and, at the same time, difficult aspects of the
simulations of applications and systems designed for mo-
bile environments. Currently, there are very few and very
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recent publicly available data banks capturing node move-
ment in real large-scale mobile ad hoc environments. For
example, researchers at Intel Research Laboratory in Cam-
bridge and the University of Cambridge distributed Blue-
tooth purpose-made devices to a certain number of people
in order to collect data about human movements to study
the characteristics of the co-location patterns among people.
These experiments were firstly conducted among students
and researchers in Cambridge [6] and then among the partic-
ipants of InfoCom 2005 [16]. Other similar projects are the
Wireless Topology Discovery project [24] at the University
of California at San Diego and the campus-wide WaveLan
traffic measurement and analysis exercises that have been
carried out at Dartmouth College [12]. At this institution,
a project with the aim of creating a repository of publicly
available traces for the mobile networking community has
also been started [21].

Until now, real movement traces have been rarely used
for the evaluation and testing of protocols and systems for
wireless networks, with the only exception of [39] and [15],
in which the authors used respectively the movement traces
collected from a campus scenario and direct empirical obser-
vations of the movements of pedestrians in downtown Osaka
as a basis of the design of their models.

In general, synthetic models have been largely preferred [5].
The reasons of this choice are many. First of all, the avail-
able data are few: the academic and industrial projects
providing publicly available data have started very recently.
Second, these traces are related to very specific scenarios and
it is still quite difficult to generalize their validity. However,
as we will discuss later in the paper, these data show surpris-
ing common statistical characteristics, such as the same dis-
tribution of the duration of the contacts and inter-contacts
intervals. Third, the available traces do not allow for sen-
sitivity analysis of the performance of the algorithm, since
it is not possible to vary the values of the parameters that
characterize the simulation scenarios, such as the distribu-
tion of the speed or the density of the hosts. Finally, in some
cases, it may be important to have a mathematical model
that underlines the movement of the hosts in simulations,
in order to study its impact on the design of protocols and
systems.

Many mobility models for the generation of synthetic traces
have been presented (a survey can be found in [5]). The
most widely used of such models are based on random indi-
vidual movement; the simplest, the Random Walk Mobility
Model (equivalent to Brownian motion), is used to represent
pure random movements of the entities of a system [7]. A
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slight enhancement of this is the Random Way-Point Mo-
bility Model [18], in which pauses are introduced between
changes in direction or speed. More recently, a large num-
ber of more sophisticated mobility models for ad hoc net-
work research have been presented like [4, 17, 22].

However, all synthetic movement models are suspect be-
cause it is quite difficult to assess to what extent they map
reality. It is not difficult to see, even only with empiri-
cal observations, that the random mobility models generate
behaviour that is most unhuman-like. This analysis is con-
firmed by the examination of the available real traces. As
we will discuss later in this paper, mobility models based
on random mechanisms generates traces that show proper-
ties (such as the duration of the contacts between the mobile
nodes and the inter-contacts time) that are very distant from
those extracted from real scenarios.

Our work is based on a simple observation. In mobile
ad hoc networks, mobile devices are usually carried by hu-
mans, so the movement of such devices is necessarily based
on human decisions and socialization behaviour. It is, for
instance, important to model the behaviour of individuals
moving in groups and between groups, as clustering is likely
in the typical ad hoc networking deployment scenarios of
disaster relief teams, platoons of soldiers, etc. In order to
capture this type of behaviour,we define models for group
mobility that are heavily dependent on the structure of the
relationships among the people carrying the devices. Exist-
ing group mobility models fail to capture this social dimen-
sion [5].

Within the emerging field of sensor networks, mobile hosts
are not necessarily carried directly by humans. However,
sensor networks are usually embedded in artefacts (such as
cars or planes or clothing) or are spread across a geographi-
cal area (such as environmental sensors). In the former case,
the movements of the sensors embedded in a car or in aero-
plane, for instance, are not random but are dependent on
the movements of the carriers; in the latter, movement is
not generally a major issue.

Taken together, for those systems in which mobility is im-
portant and for which a synthetic mobility model is an essen-
tial ingredient, it would appear to be important to consider
the influence of the human-level social network as something
that informs likely individual and group mobility patterns.
Fortunately, in recent years, such networks have been inves-
tigated in considerable detail, both in sociology and in other
areas, most notably mathematics and physics. Mathemati-
cal models of such networks have been empirically shown to
be useful in describing many types of relationships, includ-
ing real social relationships [31, 28].

In this paper, we propose a new mobility model that is
founded on social network theory, because this has empiri-
cally been shown to be useful as a means of describing hu-
man relationships. In particular, one of the inputs of the
mobility model is the social network that links the individu-
als carrying the mobile devices. The model allows collections
of hosts to be grouped together in a way that is based on
social relationships among the individuals. This grouping
is only then mapped to a topographical space, with topog-
raphy biased by the strength of social ties. We will also
show that the movements of the hosts are also driven by the
social relationships among them. The model also allows for
the definition of different types of relationships during a cer-
tain period of time (i.e., a day or a week). For instance, it
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Figure 1: Example of social network.

might be important do be able to describe that in the morn-
ing and in the afternoon of weekdays, relationships at the
workplace are more important than friendships and family
one, whereas the opposite is true during the evenings and
weekends.

We evaluate our model using real mobility traces provided
by Intel Research Laboratory in Cambridge and we show
that the model provides a good approximation of real move-
ments in terms of some fundamental parameters, such as
the distribution of the contacts duration and inter-contacts
time. In particular, the data shows that an approximate
power law holds over a large range of values for the inter-
contacts time. Contacts duration distribution, instead, fol-
lows a power law for a more limited range. These character-
istics of distribution are also very similar to those observed
by the researchers at the University of California at San
Diego and Dartmouth College.

The proposed model is partially based on the work pre-
sented by Musolesi et alii in [25]. With respect to that paper,
many aspects of the model have been revised to try to map
reality with more accuracy. More specifically, in this work
the formation of the groups is based on an algorithm for
the detection of communities in social networks [27]. The
placement of the groups and the dynamics of the hosts in
the geographic space have also been completely re-designed.
Furthermore, this paper presents a thorough evaluation of
the model and a comparison with real traces, which is not
presented in [25].

The paper has the following structure: Section 2 contains
a definition of social network and illustrates some of the re-
sults offered by social network theory. Section 3 shows how
these results can be used to design a social network founded
mobility model. Section 4 illustrates the results of the evalu-
ation of the model based on the comparison with real traces;
some simulation results about the impact of the proposed
mobility model on the performance of the AODV and DSR
protocols are also discussed. In Section 5 we compare the
proposed mobility model with the current state of the art
and we outline our current research directions. Section 6
concludes the paper, summarizing the original contribution
of our work.

2. SOCIAL NETWORKS
A social network describes a set of people (or groups of

people) with some pattern of contact or interaction among
each others [36]. Research studies in the area of social net-
works started in the 1920s [9]. However, the first significant
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quantitative results were presented by Rapoport [33] and
his colleagues in the 1950s and 1960s in a series of papers in
which they analyzed the statistics of epidemic diffusion in
populations characterised by different social structures.

Whilst this was pioneering exploratory work, it was not
rigorous from a scientific point of view. However, in that
period, a renewed interest in graph theory led to the def-
inition of the so-called random graphs by Paul Erdős and
Alfred Rényi [8]. This, then, was the beginning of the com-
plex networks research area, investigating properties such as
their topology, average diameter and degree of connectivity,
as well as the presence of clusters in networks.

In the recent years, various types of networks (such as the
Internet, the World Wide Web and biological networks) have
been investigated by many researchers especially in the sta-
tistical physics community. Theoretical models have been
developed to reproduce the properties of these networks,
such as the so-called small worlds model proposed by Watts
and Strogats [41] or various scale-free models1 [29, 40]. Ex-
cellent reviews of the recent progress in complex and social
networks analysis may be found in [1] and [29].

However, as discussed by Newman and Park in [31], social
networks appear to be fundamentally different from other
types of networked systems. In particular, even if social
networks present typical small-worlds behaviour in terms of
the average distance between pairs of individuals (the so-
called average path length), they shows a greater level of
clustering. In particular, in [31] the authors observe that
the level of clustering seen in many non-social systems is
no greater than in those generated using pure random mod-
els. Instead in social networks, clustering appears to be far
greater than in networks based on stochastic models. The
authors suggest that this is strictly related to the fact that
humans usually organize themselves into communities. Ex-
amples of social networks used for these studies are rather di-
verse and include, for instance, networks of coauthorships of
scientists [28] and the actors in films with Kevin Bacon [41].

Many mathematical models have been proposed in the
recent years to generate synthetic social networks [41] that
show the same properties of real ones. We will use these
results in order to generate realistic social networks struc-
tures that are one of the fundamental input of the proposed
mobility model.

3. DESIGN OF THE MOBILITY MODEL
In this section we show how we designed a mobility model

which is founded on the results of social network theories
briefly introduced above. Firstly, we describe how we repre-
sent the social network. Then, we present how we identify
communities and groups in the network and how the com-
munities are associated to a geographical space. Our obser-
vation here is that people with strong social links are likely
to be geographically colocated often or from time to time.
The next stage is to devise a model for the movements of
the nodes, that, again, has to mirror the strength of social
relationships. We argue that individuals with strong social

1Scale-free networks are characterized by a degree distribu-
tion that shows the following power-law tail shape:

P (k) = k−γ

A function f(x) is scale-free if it remains unchanged to
within a multiplicative factor under a re-scaling of the inde-
pendent variable x (i.e., it has a power-law form) [29].

relationships move towards (or within) the same geograph-
ical area. We will then show that the emergent movement
patterns provides a good approximation of real ones.

3.1 Modelling Social Relationships
One of the classic ways of representing social networks

are weighted graphs. Each node represents one person. The
weights associated with each edge of the network is used to
model the strength of the interactions between individuals.
An example of social network is represented in Figure 1.

It is our explicit assumption that these weights, which are
expressed as a measure of the strength of social ties, can
also be read as a measure of the likelihood of geographic
colocation, though the relationship between these quantities
is not necessarily a simple one, as will become apparent. We
model the degree of social interaction between two people
using a value in the range [0, 1]. 0 indicates no interaction;
1 indicates a strong social interaction2.

As a consequence, the network in Figure 1 can be repre-
sented by the 10 × 10 symmetric matrix M showed in Fig-
ure 2. We refer to the matrix represented social relationships
as Interaction Matrix.

M =

266666666666664

1 0.76 0.64 0.11 0.05 0 0 0.12 0.15 0
0.76 1 0.32 0 0.67 0.13 0.23 0.45 0 0.05
0.64 0.32 1 0.13 0.24 0 0 0.15 0 0
0.11 0 0.13 1 0.54 0.83 0.57 0 0 0
0.05 0.67 0.24 0.54 1 0.2 0.41 0.2 0.23 0
0 0.13 0 0.83 0.2 1 0.69 0.15 0 0
0 0.23 0 0.57 0.41 0.69 1 0.18 0 0.12

0.12 0.45 0.15 0 0.2 0.15 0.18 1 0.84 0.61
0.15 0 0 0 0.23 0 0 0.84 1 0.65
0 0.05 0 0 0 0 0.12 0.61 0.65 1

377777777777775

Figure 2: Example of an Interaction Matrix repre-
senting a simple social network.

The generic element mi,j represents the interaction be-
tween two individuals i and j. We refer to the elements
of the matrix as the interaction indicators. The diagonal
elements represent the relationships that an individual has
with himself and are set, conventionally, to 1. In Figure 1,
we have represented only the link associated to a weight
equal to or higher than 0.25.

The matrix is symmetric since, to a first approximation,
interactions can be viewed as being symmetric. It is, how-
ever, worth underlining that we are using a specific mea-
sure of the strength of the relationships. It is probable that
by performing psychological tests, the importance of a rela-
tionship, such as a friendship, will be valued differently by
the different individuals involved; in our modelization, this
would lead to an asymmetric matrix. We plan to investigate
this issue further in the future.

The Interaction Matrix is also used to generate a Con-
nectivity Matrix. From the matrix M we generate a binary
matrix C where a 1 is placed as an entry cij if and only if

2It is worth noting that these indicators are not a measure
of the subjective importance of the relationships, such as
family ties or friendships. Let us consider the case of a
person working in a town that is different from the one in
which his parents live. In this case, the social relationship is
strong from a genealogical (and affective) point of view, but
is weak if we consider the likelihood of direct interaction be-
tween them. In other words, in our model, this relationship
will be modelled using a low value. An example of strong
social interaction may be the case of two colleagues sharing
the same office.
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mi,j is greater than a specific threshold t. The Connectiv-
ity Matrix extracted by the Interaction Matrix in Figure 2
is showed in Figure 3. The idea behind this is to say two
people are considered interacting only if their interaction
value is greater than the threshold. In our case, we have a
direct mapping to the graph in Figure 1, where we set the
threshold equal to 0.25.

C =

266666666666664

1 1 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 1 0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1

377777777777775

Figure 3: Example of a Connectivity Matrix repre-
senting a simple social network.

The Interaction Matrix (and, consequently, the Connec-
tivity Matrix) can be derived by available data (for exam-
ple, from a sociological investigation) or using mathematical
models that are able to reproduce characteristics of real so-
cial networks. As we will discuss in Section 4.2.2, the default
implementation of our model uses the so-called Caveman
model [41] for the generation of synthetic social networks
with realistic characteristics (i.e, high clustering and low av-
erage path length). However, this is a customizable aspect
and if there are insights on the type of scenario to be tested,
a user-defined matrix can be inputed.

3.2 Detection of Community Structures
The simulation scenario is established by associating groups

of hosts to certain area in geographical space. Therefore, af-
ter the definition of the social graph described above, groups,
i.e., the highly connected set of nodes in the graph, need to
be isolated. Fortunately, there are some algorithms which
can be exploited for this purpose.

We use the algorithm proposed by Newman and Girvan
in [30] to detect the presence of community structures in
social networks. This algorithm is based on the calcula-
tion of the so-called betweenness of edges. The betweeneess
provides a measure of the centrality of nodes. For exam-
ple, considering two communities connected by few inter-
community edges, all the paths through the nodes in one
community to nodes in the other must traverse one of these
edges, that, therefore, will be characterised by a high be-
tweenness. Intuitively then, one of the possible estimation
of the centrality of an edge is given by the number of short-
est (geodesic) paths between all pairs of vertices that run
along it. In other words, the average distance between the
vertices of the network has the maximum increase when the
nodes with the highest betweenness are removed.

Therefore, in order to extract the communities from the
network, nodes characterized by high values of centrality are
progressively detected in following round. At each round,
one of the edge of the host with the highest centrality is re-
moved. The final result is a network composed of (isolated)
groups of hosts (i.e., the communities).

The complexity of this algorithm is O(mn2), considering
a graph with m edges and n vertices. The calculation of
the shortest path between a particular pair of vertices can
be perfomed using a breadth-first search in time O(m) and
there are O(n2) vertices. However, in [30], Newman and

Girvan proposed a faster algorithm with a complexity equal
to O(mn). A coincise description of this algorithm for the
calculation of the betweenness can be found in the appendix
of this paper.

As we said, the algorithm can be run a number of times
on the graph, severing more and more links and generating a
number of isolated communities. However we need to derive
a mechanism to stop the algorithm when further cuts would
decrease the quality of the results: this would mean that we
have reached a state when we have meaningful communities
already. We adopted a solution based on the calculation of
an indicator defined as modularity Q [30]. This quantity
measures the proportion of the edges in the network that
connect vertices within the same community minus the ex-
pected value of the same quantity in a network with the
same community division but random connections between
the vertices. If the number of edges within the same com-
munity is no better than random, the value of Q is equal
to 0. The maximum value of Q is 1; such a value indicates
very strong community structure. In real social networks,
the value of Q is usually in the range [0.3, 0.7]. The ana-
lytical definition of the modularity of a network division is
presented in Section B of the appendix.

At each run the algorithm severs one edge at a time and
measures the value of Q. The algorithm terminates when the
obtained value of Q is less than the one we have obtained
in the previous edge removal round. This is motivated by
the fact that Q is a monotic function and usually presents
one or, at maximum, but much more rarely, two local peaks:
therefore, we can stop when the first local peak is reached.
This is clearly an approximation since the value of the other
possible local peak (if exists) may be higher, but it has been
observed that the quality of the division that we obtain is
in the vast majority of the cases very good [30]. Also, by
adopting this technique, we considerably simplify the com-
putational complexity of the algorithm.

In order to illustrate this process, let us now consider the
social network taken as example represented in Figure 1.
Three communities (that can be represented by sets of hosts)
are detected by running the algorithm: C1 = {A, B, C},
C2 = {D, E, F, G} and C3 = {H, I, L}. Now that the com-
munities are identified given the matrix, there is a need to
associate them with a location.

3.3 Placement of the Communities in the Sim-
ulation Space

After the communities are identified, each of them is ran-
domly associated to a specific location (i.e., a square) on a
grid3. We use the symbol Sp,q to indicate a square in po-
sition p, q. The number of rows and columns are inputs of
the mobility model.

Going back to the example, in Figure 4 we show how the
communities we had identified could be placed on a 3x4 grid
(the dimension of the grid is configurable by the user and
influences the density of the nodes in each square). The
three communities C1, C2, C3 are placed respectively in the
grid in the squares Sa,2, Sc,2 and Sb,4.

Once the nodes are placed on the grid, the model is estab-

3A non random association to the particular areas of the
simulation area can be devised, for example by deciding pre-
defined areas of interest corresponding for instance to real
geographical space. However, this aspect is orthogonal to
the work discussed in this paper.
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lished and the nodes move around according to social-based
attraction laws as explained in the following.

3.4 Dynamics of the Mobile Hosts
Each node is assigned to a goal. The goal is simply a point

on the grid which acts as final destination of movement like
in the Random Way Point model, with the exception that
the selection of the goal is not as random. Consequently, a
node is also associated to a certain square in the grid. We
say that a host i belongs to a square Sp,q if its goal is inside
Sp,q.

3.4.1 Selection of the first goal
When the model is initially established, the goal of each

host is randomly chosen inside the square associated to its
community (i.e, the first goals of all the hosts of the com-
munity C1 will be chosen inside the square Sa,2).

3.4.2 Selection of the subsequent goals
When a goal is reached, the new goal is chosen accord-

ing to the following mechanism. A certain number of hosts
(that may be also equal to 0) is associated to each square
Sp,q at time t. Each square (i.e., place) exterts a certain so-
cial attractivity for a certain person. The social attractivity
of a square is a measure of its importance in terms of the
social relationships for the individual taken into considera-
tion. The social importance is calculated by evaluating the
strength of the relationships with the people that are mov-
ing towards that particular square (i.e., with the individuals
that have a current goal inside that particular square). More
formally, given CSp,q the set of the hosts associated to the
square Sp,q, we define the social attractivity of that square
towards the host i SAp,qi

as follows

SAp,qi
=

nP
j=1
j∈CSp,q

mi,j

w

where w is the cardinality of CSp,q (i.e., the number of
hosts associated to the square Sp,q). In other words, the
social attractivity of a square in position (p, q) towards an
individual i is defined as the sum of the interaction indica-
tors that represent the relationships between i and the other
hosts that belong to that particular square, normalized by
the total number of hosts associated to that square.

The new goal is then randomly chosen inside the square
characterised by the highest social attractivity; it may be
again inside the same square or in a different one. New
goals are chosen inside the same area when the input so-
cial network is composed by loosely connected communities
(in fact, in this case, hosts associated with different com-
munities have, in average, weak relationships between each
others). On the other hand, a host may be attracted to a
different square, when it has strong relationships with both
communities. In other words, from a graph theory point of
view, the host is located between two (or more) clusters of
nodes in the social network4.

Let us suppose, for example, that host A has reached its
first goal inside the square Sa,2. The new goal is chosen by

4This is usually the case of hosts characterised by a high
betweenness that, by definition, are located between two (or
more) communities.
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Figure 4: Example of initial simulation configura-
tion.

calculating the social attractivities of all the squares that
composed the simulation space. Let us suppose that the
square Sc,2 now exterts the highest attractivity (for example,
because a hosts with strong relationship with node A has
joined that community). Therefore, the new goal will be
selected inside that square.

3.5 Social Network Reconfigurations and their
Effects on the Dynamics of Mobile Hosts

Like in everyone’s life, the day movement are governed
by different patterns of mobility which depend on the peo-
ple we need to interact with. For example, most human
beings spend a part of their day at work, interacting with
colleagues, and another part at home with their families.
In order to model this, we allow the association of different
social networks to different periods of a simulation.

Periodically, the social networks at the basis of the mo-
bility model can be changed. The interval of time between
changes is an input of the model. When the reconfiguration
of the underlying social network happens, nodes are assigned
to the new communities that are detected in the network
using the algorithms described in Section 3.2. Communities
are then randomly associated to squares in the simulation
space. New goals are then assigned to the mobile nodes.
Goals are chosen inside the square of the grid to which the
community they belong to is assigned. Notice that the nodes
are not relocated instantaneously, but they will move to-
wards their destination gradually. The nodes start moving
towards the geographical region where other nodes that have
strong interactions with them will converge. This mirrors
the behaviour, for instance, of commuters who travel home
every evening to join their families.

4. EVALUATION AND DISCUSSION
In order to evaluate our model we have performed a num-

ber of tests, in particular we have taken real mobility traces
collected by Intel Research Laboratory in Cambridge. We
have then tested our model using realistic social networks
and compared the mobility patterns with the Intel traces.
We have also compared the performance of AODV [32] and
DSR [19] using the Random Way Point and our Community
based mobility models. In this section, we will present and
discuss the results of our simulations comparing them with
these data from real scenarios.
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4.1 Implementation of the model
We implemented a movement patterns generator that pro-

duce primarily traces for the ns-2 simulator [23], one of the
most popular in the ad hoc network research community.
However, the generator is also able to produce traces in a
XML meta-format that can be parsed and trasformed into
other formats (for example, by using XSLT) such as the one
used by GlomoSim [42].

The model is available for downloading at the following
URL: [omitted for blind review].

4.2 Validation of the Model using Real Move-
ment Traces

In this section, we present a comparison of the proper-
ties of the movement patterns generated by our mobility
model with those of the real traces provided by Intel Re-
search Laboratory in Cambridge. The description of these
measurement exercise is presented in [6]. In this paper, the
authors also compare their results with other publicly avail-
able data sets provided by McNett and Voelker from Uni-
versity of California at San Diego [24] and by Henderson et
alii from Dartmouth College [12] showing evident similari-
ties between the patterns movements collected by the three
different groups. For this reason, we decided to compare the
traces obtained by using our mobility model only with the
data provided by the researchers in Cambridge5.

4.2.1 Description of the Data Sets
The traces were collected by Intel researchers using iMotes

(a modified version of the Berkeley Motes) [2] equipped with
Bluetooth support. The iMotes were then given to members
of the staff of Intel Research Laboratory and University of
Cambridge. The iMotes were packed in keyfobs in order to
make sure that people carried them around.

Each iMotes logged contacts data in a flash memory using
the standard Bluetooth Baseband layer inquiry procedure.
Every contact was stored as a tuple composed of three fields,
the MAC address of the other device, the start and the end
of the interval of time of the contact. Every iMotes collected
information not only about the other samplers but also re-
lated to the other Bluetooth devices that they were in reach
of them.

The iMotes were programmed to perform an inquiry for 5
seconds every 2+∆ minutes with ∆ randomly chosen in the
range [−12, 12] seconds. This correction was introduced to
avoid undesired synchronization effects, i.e., to avoid that
the iMotes performed inquiries at the same time. In fact,
iMotes are not able to perform and reply to inquiries con-
temporaneously. Between inquiries, the iMotes go in sleep
mode, where they are still able to provide replies.

4.2.2 Description of the Simulation
We tested our mobility model using several runs gener-

ating different mobile scenarios and we compared it with
the real movement patterns provided by Intel and synthetic
traces generated using a Random Way Point model.

We tested our model considering a scenario composed of
100 hosts in a simulation area of 5 km× 5 km, divided into

5As said in the introduction of this paper, the measurement
exercise was also repeated among the partecipants of Info-
Com 2005 [16]. In our comparison, we used the traces re-
lated to the first experiment. However, the results obtained
in the two different studies show remarkable similarities.

625 squares of 200 m (i.e., the numbers of rows and columns
were set to 25). We choose a relatively large simulation sce-
nario with a low population density in order to differentiate
the results from those obtained with a Random Way Point
model. In fact, in small simulation areas, the limited pos-
sible movements in the area and the higher probability of
having two nodes in the same transmission range may affect
the simulation results introducing side-effects that are not
entirely due to the mobility model.

We also assumed that each device is equipped with an om-
nidirectional antenna with a transmission range of 250 m,
modeled using a free space propagation model. The speeds
of the nodes were randomly generated according to a uni-
form distribution in the range [1 − 6] m/s. The duration
of the simulation is one day and the reconfiguration interval
is equal to 8 hours. These values have not been chosen to
reproduce exactly the movements described by the traces
provided by Intel. We were more interested in observing
if similar patterns could be detected in synthetic and real
traces. In other words, our goal has mainly been to verify
whether the movement patterns observed in Intel traces are
reproduced by our mobility model.

A key aspect of the initialization of our model is the selec-
tion of the social network in input. We implemented a gen-
erator of social networks using the so-called Caveman Model
proposed by Watts [41]. The network is built starting from
K fully connected graphs (representing communities living
in isolation, like primitive men in caves). Every edge is re-
wired to point to another cave with a certain probability p.
Figure 5.a shows an initial network configuration composed
by 3 disconnected communities (caves) composed by 5 indi-
viduals; a possible social network after random rewiring is
represented in Figure 5.b.

Individuals of one cave are closely connected, whereas
populations belonging to different caves are sparsely con-
nected. Therefore, the social networks generated using this
model are characterized by a high clustering coefficient and
low average path length. It has been proved that this model
is able to reproduce social structures very closed to real
ones [41]. We generated social networks with different rewiring
probabilities, also considering the case of disconnected com-
munities (i.e.,p = 0).

We also implemented a movement patterns generator based
on the Random Way Point model. We generated traces with
the same simulation scenarios in terms of size of the area and
characteristics of the mobile devices, with hosts that move
with a speed uniformly distributed in the range [1− 6] m/s
and stop time equal to [1 − 10] m/s.

We repeated the experiments using a number of runs suf-
ficient to achieve a 10% confidence interval.

4.2.3 Simulation Results
We analyzed two properties of the movement patterns, the

contact duration and the inter-contacts time. We use the
same definitions of the authors of [6] in order to compare
our results with those presented in their work. We define
contact duration as the time interval for which two devices
can communicate when they are in the same radio range. We
also define inter-contact time as the time interval between
two contacts. These indicators are particularly important in
ad hoc networking and in particular for opportunistic mobile
networks, such as delay tolerant mobile ad hoc networks [26,
20]. In fact, inter-contacts times define the frequency and
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Figure 5: Generation of the social network in input
using the Caveman model: (a) initial configuration
with 3 disconnected ‘caves’. (b) generated social
network after the rewiring process.

the probability of being in contact with the recipient of a
packet or a potential carrier in a given time period.

Figure 6 shows the comparison between the inter-contacts
time and the contacts duration cumulative distributions6

using log-log coordinates. These distributions are extracted
from the real and synthetic traces generated by the Random
Way Point (indicated with RWP) and our Community based
mobility model (indicated with CM) with different rewiring
probabilities p.

With respect to the inter-contacts time, our traces (ex-
cluding the case with p = 0 that we will discuss separately)
shows an approximate power law behaviour for a large range
of values like those extracted from Intel data. A similar pat-
tern can be observed in UCSD and Dartmouth traces [6].
The cumulative distribution related to Random Way Point
instead shows a typical exponential distribution. The same
behaviour can be observed for the traces generated using
our Community based mobility model with a probability of
rewiring equal to 0. In fact, in this case, the only move-
ments of the hosts outside the assigned square happen when
a reconfiguration takes place (i.e., a new generation of the
social networks takes and a consequent new assignment to
different squares in the grid are performed).

As far as the contacts time distribution is concerned, it is
possible to observe a power-law behaviour for a much more
limited range of values and in general with a lower angu-
lar coefficient of the interpolating line. It is worth noting
that the traces from Dartmouth College and UCSD show
a power-law distribution with different angular coefficients.
It seems that data related to different scenarios are char-
acterized by different types of power-law distribution. The
cumulative distribution of the contacts time extracted by the
traces generated by our mobility model is typically power-
law for a large set of values.

By plotting the same distributions using semi-log coor-
dinates (see Figure 7), the differences between the curves
corresponding to real traces and those generated using the
Random Way Point mobility model are even more evident.
The exponential nature of the cumulative distribution of
the inter-contacts time7 extracted by the latter is clearly re-
flected by the approximated straight line that is shown in

6Cumulative distributions are generally used instead of fre-
quency distributions to avoid the issues related to the choice
of the bins of the plot. It is possible to prove that if a set
of data shows a power-law behaviour using a frequency his-
togram, its cumulative distribution also follows the same
pattern.
7This behaviour has been theoretically studied and pre-
dicted by Sharma and Mazumdar in [37].

the figure.
Figure 8.a and 8.b show the influence of the speed respec-

tively on the cumulative distributions of the inter-contacts
time and contacts duration. We simulated scenarios with
host with a speed uniformly distributed in the range [1− 6],
[1 − 10] and [1 − 20]m/s. It is interesting to note that the
cumulative distributions related to all these scenario can be
approximated with a power-law function for a wide range of
values.

The impact of the density of the population in the sim-
ulation scenario is presented in Figure 11. We simulated
scenarios composed by 100, 200, 300 nodes with a starting
number of groups for the Caveman model respectively equal
to 10, 20, 30 and a rewiring probability equal to 0.2. Also
in these scenarios, the inter-contacts time and contacts du-
ration distributions follow a similar pattern. As discussed
previously, our aim was not to reproduce exactly the traces
provided by Intel. However, quite interestingly we observe
that the inter-contacts time distribution lie in between the
curves representing the scenario composed of 100 and 200
nodes. The number of nodes recorded in the Intel experi-
ments was in fact 140. Instead, the contacts duration dis-
tribution is bounded by the curves extracted by these two
synthetic traces for a smaller range of values. Finally, in
Figure 8 we consider a scenario composed of 100 hosts con-
nected by a social network generated using different initial
number of groups (i.e., caves) as input for the Caveman
model (with a re-wiring probability equal to 0.1). By vary-
ing the number of groups, the density of the squares of the
grid changes. It is interesting to note that the power-law
patterns can be observed in all the scenarios also with a
large number of small initial groups.

4.3 Influence of the Choice of the Mobility
Model on Routing Protocol Performance

4.3.1 Simulation Description
We also tested the mobility model in case of dense net-

works. Using ns-2, we simulated a scenario composed of 50
hosts and we compared the performance in terms of deliv-
ery ratio of the AODV [32] and DSR [19] protocols We used
a 1000m × 1000m simulation area with a maximum node
transmission range equal to 250m. We chose the two-ray
pathloss model as propagation model and at the MAC layer,
the IEEE 802.11 DCF protocol was used with a bandwidth
equal to 2 Mbps. We started 10 random sessions using CBR
traffic with data packet size and sending rate respectively
equal to 512 bytes and 4 packets/second. The simulation
time was equal to 2 hours.

We studied the influence of the speed on the performance
comparing the results obtained by using the Random Way
Point model and the Community based mobility model pre-
sented in this paper. Every node in the simulation is moving
at the same speed. With respect to the Random Way Point
model, the stopping time are chosen randomly in the inter-
val [1− 10]m/s. As far as our mobility model is concerned,
the reconfiguration interval was set to 1 hour. The social
network in input was generated with the Caveman model
with 5 groups of 10 individuals and a re-wiring probability
equal to 0.1. The simulation scenarios was divided into a
5x5 grid.

Also for this set of experiments we performed a number of
runs sufficient to achieve a confidence interval of 10% error.
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Figure 6: Comparison between synthetic and real traces (log-log coordinates) : (a) cumulative distribution
of inter-contacts time in seconds; (b) cumulative distribution of contacts duration in seconds.
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4.3.2 Simulation Results
Using the Random Way Point mobility model, as expected

and confirming the results obtained by the authors of these
protocols, the delivery ratio decreases as the speed increases.
Instead, using our model, the decrease of the delivery ratio
is less evident, since the emerging structure is composed of
groups of hosts moving in limited areas (i.e., the square of
the grids) that are ‘bridged’ by hosts roaming among them.
In other words, the movement of most of the hosts is con-
strained in geographical terms and then topology changes
are less frequent than in the case of a pure random model.

It is also interesting to note that in case of fixed hosts (i.e.,
with a speed equal to 0), the delivery ratio that we obtained
using our mobility model is lower than in the scenarios with
a speed greater than 0, since in the former case we may have
disconnected communities, whereas in the latter hosts move
between communities, providing a link between them.

5. DISCUSSION

5.1 Related Work
Many mobility models have been presented with the aim

of allowing scalability testing of protocols and algorithms
for mobile ad hoc networking. A comprehensive review of
the most popular mobility models used by the mobile ad
hoc research community can be found in [5]. However, it
is interesting and, at the same time, surprising to note that
even the best solutions and approaches have only been tested
using completely random models such as the Random Way-
Point model, without grouping mechanisms. A more refined
approach used a simple groups mobility model which still
had a large random component in the way groups were cre-
ated and moved [14]. The almost pervasive adoption of such
models has generated a considerable amount of work that is
predicated on the reasonableness of random mobility mod-
els.

The work most directly related to ours can be found in [13].
This model is predicated upon similar assumptions, but is
considerably more limited in scope. In that model hosts
are statically assigned to a particular group during the ini-
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Figure 8: Influence of the hosts speed: (a) cumulative distribution of inter-contacts time in seconds; (b)
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Figure 9: Influence of the density of population: (a) cumulative distribution of inter-contacts time in seconds;
(b) cumulative distribution of contacts duration in seconds.

tial configuration process, whereas our model accounts for
movement between groups. Moreover, the authors claim
that mobile ad hoc networks are scale-free, but the typical
properties of scale-free networks are not exploited in the de-
sign of the model presented by the authors. The scale-free
distribution of mobile ad hoc networks is still not proven
in general, since practical measurements are not currently
available. Scale-free properties are strictly dependent on
the movements of hosts and therefore are dependent on the
actual simulated scenarios/applications [11]. With respect
to this work we allow the setting of the initial social net-
work, which conditions the movement patterns, this allows
different kind of networks to emerge, including small world
and scale free.

In the recent years, many researchers have tried to refine
existing models in order to make them more realistic. In
[17], a technique for the creation of more realistic mobility
models that include the presence of obstacles is presented.
The specification of obstacles is based on the use of Voronoi
graphs in order to derive the possible pathways in the simu-

lation space. This approach is orthogonal to ours; this would
be an interesting extension of the model as discussed in the
next section.

Tuduce and Gross in [39] present a mobility model based
on real data from the campus wireless LAN at ETH in
Zurich. They use a simulation area divided into squares
and derive the probability of transitions between adjacent
squares from the data of the access points. It is interest-
ing to note that also in this case the session duration data
follow a power-law distribution. This approach can be a re-
fined version of the Weighted Waypoint Mobility Model [15],
based on the probability of moving between different ar-
eas of a campus using a Markov model. Moreover, Tuduce
and Gross’ model represent the movements of the devices
in an infrastructure-based network and not ad hoc settings.
In [22], the authors tried to reproduce the movements of
pedestrians in downtown Osaka by analysing the character-
istics of the crowd in subsequent instants of time and maps
of the city using an empirical methodology. In general, the
main goal of these works was to try to reproduce the specific
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Figure 11: Influence of the mobility model on the protocol performance (delivery ratio vs speed): (a) AODV;
(b) DSR.

scenarios with a high degree of accuracy. We focus instead
on the cause of these movements, trying to capture the social
dimensions that lead to general emergent human movement
patterns.

Some interesting studies have been recently carried out
on the connectivity of ad hoc networks with respect to com-
plex networks theory. Glauche et al. in [11] discuss some
network properties using percolation theory [38], that is, an
application of complex networks theory derived by the in-
vestigation of physical phenomena such as phase transitions
in molecular lattices. In [35], the authors present mathe-
matical results about the possible emergence of scale-free
structures in ad hoc networks. However, the authors con-
sider only fixed ad hoc networks (such as peer-to-peer net-
works), without analysing the influence of movement in the
definition of their model.

5.2 Possible Improvements of the Model and
Current Research Directions

We believe that a number of possible features can be
added to the mobility model presented in this paper in or-
der to increase its realism. Many researchers in the ad hoc
community have been focussing on different aspects of this
problem. We believe that some of the techniques are orthog-
onal to our work and can be integrated in our model. We
plan to explore these possible refinements of the model in the
future. More specifically, in our opinion, some of the most
important improvements can be summarized as follows:

• Non random assignment of the nodes to the
geographical locations A possible improvement of
the model may be the assignment of the communi-
ties based on real mapping between groups of people
and geographical locations (such as students moving
around lecture rooms and halls in a campus, etc.). An
example of this kind of mobility models is [15]. In
the current implementation, the generation of the so-
cial networks is based on the mathematical model de-
scribed above and the placement of the communities
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is random. This allows for multiple runs with differ-
ent automatically generated social networks and mo-
bile scenarios. However, the current implementation
can be easily modified and replaced by a custom ini-
tialization of the simulation settings.

• Movement determined by pre-defined trails Many
existing mobility models are based on the definition of
trails or paths that are used to define the movements
of the mobile nodes in the simulation scenarios. Ex-
amples are the Manhattan model [5] or other models
used to simulate protocols and systems for vehicular
ad hoc networks [34]. In these models hosts move be-
tween different locations following precise paths that
represent roads or motorways. We plan to study the
effects of the introduction of pre-defined trails in our
model, in particular to characterize the movements be-
tween different communities (i.e., squares of the grid)
with better accuracy.

• Presence of obstacles As discussed in the previous
subsection, in [17] Jardosh et alii. proposes a modified
version of the Random Mobility Model that allows for
the insertion of obstacles in the simulation space. The
definition of obstacles, can also be integrated in our
mobility model easily.

Finally, we plan to study the connectivity of the generated
mobile networks also in relation to the social networks given
in input also using results from graph theory studies [3].

6. CONCLUSIONS
We have presented a new mobility model which is based on

social network theory and is predicated on the assumption
that mobility patterns are driven by the fact that devices
are carried by humans and then the movements are strongly
affected by the relationships between them.

The paper has shown how the mobility model is gener-
ated, its implementation and an evaluation based on the
comparison between our approach, existing random mobil-
ity models and real movement traces. We have shown that
our mobility model generates traces that present character-
istics similar to real ones, in terms of inter-contacts time and
contacts duration.
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APPENDIX
A. BETWEENNESS OF A NODE

The betweenness of a node in a graph is defined as the
total number of shortest paths between pairs of nodes that
pass through it [10]. The steps of the algorithm proposed
by Newman are the following:

• First of all, the shortest path to a vertex j from ev-
ery vertices in the network are calculated by using the
following algorithm:

1. Assign to vertex j a distance d equal to 0;

2. For each vertex i whose assigned distance is i, fol-
low each attached edge to the vertex k at its other

end and if k has not already been assigned a dis-
tance, assign it distance d + 1. i is declared a pre-
decessor of k;

3. Increment the value of the distance d by 1;

4. Repeat from step 2 until there are not unassigned
vertices left.

• A variable bi is assigned to every vertex of the network.
The variables are initialized to 1.

• Considering the vertices i in order from the farthest to
the nearest, the value of bi is added to the correspond-
ing variable on the predecessor vertex of i. If i has
more than one predecessor, then bi is divided equally
by them.

• The resulting values of bi represent the number of geodesic
paths to vertex j that run through each vertex of the
lattice. To calculate the betweenness for all paths, the
bi are added to a variable b′i that is maintained for
each variable and the entire calculation is repeated for
all the vertices. The final value of b′i represents the
betweenness of the vertex i.

The algorithm is presented and discussed in more details
in [30].

B. MODULARITY
Let us consider a division of a network into k communi-

ties. We define a k × k symmetric matrix e the elements
eij of which is the proportion of all edges in the network
that link vertices in community i to vertices in community
j. The trace of this matrix Tr e =

P
i eii gives the pro-

portion of edges in the network that connect vertices in the
same community. A good division into communities should
have a high value of this trace, meaning that a good portion
of the edges of the network is of edges ”inside” a community.
However, this is not sufficient to judge the quality of the di-
vision. In fact, the case of one single community corresponds
to the case of Tr e = 1.

Therefore, we define the rows sums ai =
P

j eij which
represents the proportion of edges that connect to vertices
in community i. Thus, it is possible to define the modularity
Q of a network division as follows:

Q =
X

i

(eii − a2
i ) = Tr e− ||e2||

where ||e2|| the sum of all the elements of the matrix e2.
More details can be found in [30].
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