
Designing Mobility Models based
on Social Network Theory

Mirco Musolesi Cecilia Mascolo
m.musolesi@cs.ucl.ac.uk c.mascolo@cs.ucl.ac.uk

Department of Computer Science, University College London, United Kingdom

Validation of mobile ad hoc network protocols relies almost exclusively on simulation.
The value of the validation is, therefore, highly dependent on how realistic the movement
models used in the simulations are. Since there is a very limited number of available real
traces in the public domain, synthetic models for movement pattern generation must be
used. However, most widely used models are currently very simplistic, their focus being
ease of implementation rather than soundness of foundation. Simulation results of proto-
cols are often based on randomly generated movement patterns and, therefore, may differ
considerably from those that can be obtained by deploying the system in real scenarios.
Movement is strongly affected by the needs of humans to socialise or cooperate, in one
form or another. Fortunately, humans are known to associate in particular ways that can
be mathematically modelled and that have been studied in social sciences for years.
In this paper we propose a new mobility model founded on social network theory. The
model allows collections of hosts to be grouped together in a way that is based on social re-
lationships among the individuals. This clustering is then mapped to a topographical space,
with movements influenced by the strength of social ties that may also change in time. We
have validated our model with real traces by showing that the synthetic mobility traces are
a very good approximation of human movement patterns. The impact of the adoption of the
proposed algorithm on the performance of AODV and DSR is also presented and discussed.

I. Introduction

The definition of realistic mobility models is one of
the most critical and, at the same time, difficult as-
pects of the simulation of applications and systems
designed for mobile environments. Currently, there
are very few and very recent public data banks captur-
ing node movement in real large-scale mobile ad hoc
environments.

For example, researchers at Intel Research Labora-
tory in Cambridge and the University of Cambridge
distributed Bluetooth devices to people, in order to
collect data about human movements and to study the
characteristics of the co-location patterns among peo-
ple. These experiments were firstly conducted among
students and researchers in Cambridge [5] and then
among the participants of InfoCom 2005 [11]. Other
similar projects are the Wireless Topology Discovery
project at the UCSD [17] and the campus-wide Wave-
Lan traffic measurement and analysis exercises that
have been carried out at Dartmouth College [7]. At
this institution, a project with the aim of creating a
repository of publicly available traces for the mobile
networking community has also been started [14].

Until now, in general, real movement traces have

been rarely used for evaluation and testing of proto-
cols and systems for mobile networks, with the only
exception of [25] and [10], in which the authors used,
respectively, the movement traces collected from a
campus scenario and direct empirical observations of
the movements of pedestrians in downtown Osaka as
a basis of the design of their models.

In general, synthetic models have been largely pre-
ferred [4]. The reasons of this choice are many.
First of all, as mentioned, the available data are lim-
ited. Second, these traces are related to very specific
scenarios and their validity is difficult to generalise.
However, as we will discuss later in the paper, these
data show surprising common statistical characteris-
tics, such as the same distribution of the duration of
the contacts and inter-contacts intervals. Third, the
available traces do not allow for sensitivity analysis of
the performance of the algorithm, since the values of
the parameters that characterise the simulation scenar-
ios, such as the distribution of the speed or the density
of the hosts, cannot be varied. Finally, in some cases,
it may be important to have a mathematical model that
underlines the movement of the hosts in simulations,
in order to study its impact on the design of protocols
and systems.
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Many mobility models for the generation of syn-
thetic traces have been presented (a survey can be
found in [4]). The most widely used of such models
are based on random individual movement; the sim-
plest, the Random Walk mobility model (equivalent
to Brownian motion), is used to represent pure random
movements of the entities of a system [6]. A slight en-
hancement of this is the Random Way-Point mobility
model [13], in which pauses are introduced between
changes in direction or speed. More recently, a large
number of more sophisticated mobility models for ad
hoc network research have been presented [2, 12, 15].

However, all synthetic movement models are sus-
pect because it is quite difficult to assess to what ex-
tent they map reality. It is not hard to see, even only
with empirical observations, that the random mobility
models generate behaviour that is most unhuman-like.
This analysis is confirmed by the examination of the
available real traces. As we will discuss later in this
paper, mobility models based on random mechanisms
generate traces that show properties (such as the dura-
tion of the contacts between the mobile nodes and the
inter-contacts time) very distant from those extracted
from real scenarios.

Our work is based on a simple observation. In mo-
bile ad hoc networks, mobile devices are usually car-
ried by humans, so the movement of such devices is
necessarily based on human decisions and socialisa-
tion behaviour. For instance, it is important to model
the behaviour of individuals moving in groups and be-
tween groups, as clustering is likely in the typical ad
hoc networking deployment scenarios of disaster re-
lief teams, platoons of soldiers, groups of vehicles,
etc. In order to capture this type of behaviour, we de-
fine a model for group mobility that is heavily depen-
dent on the structure of the relationships among the
people carrying the devices. Existing group mobility
models fail to capture this social dimension [4].

Fortunately, in recent years, social networks have
been investigated in considerable detail, both in soci-
ology and in other areas, most notably mathematics
and physics. In fact, in the recent years, various types
of networks (such as the Internet, the World Wide Web
and biological networks) have been investigated by re-
searchers especially in the statistical physics commu-
nity. Theoretical models have been developed to re-
produce the properties of these networks, such as the
so-called small worlds model proposed by Watts and
Strogatz [26] or various scale-free models [19].

However, as discussed by Newman and Park
in [21], social networks appear to be fundamentally
different from other types of networked systems. In

particular, even if social networks present typical
small-worlds behaviour in terms of the average dis-
tance between pairs of individuals (the so-called av-
erage path length), they show a greater level of clus-
tering. In particular, in [21] the authors observe that
the level of clustering seen in many non-social sys-
tems is no greater than in those generated using pure
random models. Instead in social networks, cluster-
ing appears to be far greater than in networks based
on stochastic models. The authors suggest that this is
strictly related to the fact that humans usually organise
themselves into communities.

In this paper, we propose a new mobility model that
is founded on social network theory. One of the in-
puts of the mobility model is the social network of
the individuals carrying the mobile devices. This net-
work can be generated synthetically using these re-
sults [26] . The model allows collections of hosts to
be grouped together in a way that is based on social
relationships among the individuals. This grouping is
only then mapped to a topographical space, with to-
pography biased by the strength of social ties. The
movements of the hosts are also driven by the social
relationships among them. The model also allows for
the definition of different types of relationships during
a certain period of time (i.e., a day or a week). For in-
stance, it might be important to be able to describe that
in the morning and in the afternoon of weekdays, re-
lationships at the workplace are more important than
friendships and family one, whereas the opposite is
true during the evenings and weekends.

We evaluate our model using real mobility traces
provided by Intel Research and we show that the
model provides a good approximation of real move-
ments in terms of some fundamental parameters, such
as the distribution of the contacts duration and inter-
contacts time. In particular, the data show that an
approximate power law holds over a large range of
values for the inter-contacts time. Instead, contacts
duration distribution follows a power law for a more
limited range. These characteristics of distribution are
also very similar to those observed by the researchers
at the University of California at San Diego and Dart-
mouth College [5]1.

The paper has the following structure: Section II
shows how these results can be used to design a so-
cial network founded mobility model. Section III il-
lustrates the results of the evaluation of the model

1It is interesting to observe that this behaviour seems not
strongly related to geographical location, but only on human re-
lationships. The traces from Dartmouth College and UCSD are
related to an AP-based infrastructure, whereas the traces from In-
tel are from an infrastructure-less ad hoc network.
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Figure 1: Example of social network.

based on the comparison with real traces; some simu-
lation results about the impact of the proposed mo-
bility model on the performance of the AODV and
DSR protocols are also discussed. In Section IV we
compare the proposed mobility model with the cur-
rent state of the art. Section V concludes the paper,
summarising the original contribution of our work.

II. Design of the Mobility Model

In this section we show how we designed a mobility
model which is founded on the results of social net-
work theories briefly introduced. The description of
the mobility model, mirroring its conceptual steps, is
organised as follows:

• Firstly, we describe how we model social rela-
tionships and, in particular, how we use social
networks as input of the mobility model.

• Secondly, we present the establishment of the
model: we discuss how we identify communities
and groups in the network and how the commu-
nities are associated to a geographical space. Our
observation here is that people with strong social
links are likely to be geographically colocated of-
ten or from time to time.

• Thirdly, we describe the algorithm that is at the
basis of the dynamics of the nodes, that, again,
is based on the strength of social relationships.
We argue that individuals with strong social rela-
tionships move towards (or within) the same ge-
ographical area.

• We show the influence of the choice of the pro-
posed mobility model on the performance of

II.A. Using Social Networks as Input of
the Mobility Model

II.A.1. Modelling Social Relationships

One of the classic ways of representing social net-
works is weighted graphs. An example of social net-
work is represented in Figure 1. Each node represents
one person. The weights associated with each edge of
the network is used to model the strength of the inter-
actions between individuals [23]. It is our explicit as-
sumption that these weights, which are expressed as a
measure of the strength of social ties, can also be read
as a measure of the likelihood of geographic coloca-
tion, though the relationship between these quantities
is not necessarily a simple one, as will become ap-
parent. We model the degree of social interaction be-
tween two people using a value in the range [0, 1]. 0
indicates no interaction; 1 indicates a strong social in-
teraction. Different social networks can be valid for
different parts of a day or of a week2.

As a consequence, the network in Figure 1 can
be represented by the 10 × 10 symmetric matrix M
showed in Figure 2, where the names of nodes corre-
spond to both rows and columns and are ordered al-
phabetically. We refer to the matrix representing the
social relationships as Interaction Matrix. The generic

M =

266666666666664

1 0.76 0.64 0.11 0.05 0 0 0.12 0.15 0
0.76 1 0.32 0 0.67 0.13 0.23 0.45 0 0.05
0.64 0.32 1 0.13 0.25 0 0 0.15 0 0
0.11 0 0.13 1 0.54 0.83 0.57 0 0 0
0.05 0.67 0.25 0.54 1 0.2 0.41 0.2 0.23 0
0 0.13 0 0.83 0.2 1 0.69 0.15 0 0
0 0.23 0 0.57 0.41 0.69 1 0.18 0 0.12

0.12 0.45 0.15 0 0.2 0.15 0.18 1 0.84 0.61
0.15 0 0 0 0.23 0 0 0.84 1 0.65
0 0.05 0 0 0 0 0.12 0.61 0.65 1

377777777777775

Figure 2: Example of an Interaction Matrix represent-
ing a simple social network.

element mi,j represents the interaction between two
individuals i and j. We refer to the elements of the
matrix as the interaction indicators. The diagonal el-
ements represent the relationships that an individual
has with himself and are set, conventionally, to 1. In
Figure 1, we have represented only the links associ-
ated to a weight equal to or higher than 0.25.

2Let us consider a family of three people, with one child. Dur-
ing the days, when the child is at school and the parents at their
workplaces, their social relationship is weak (i.e., represented
with low values in the matrix). During the evening, the social
ties are stronger as the family members tend to be co-located (i.e.,
high values in the matrix). The relationship between two col-
leagues sharing the same office will be represented with a value
higher than these family relationships during the working hours
in week days.
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The matrix is symmetric since interactions can be
viewed as being symmetric. However, it is worth un-
derlining that we are using a specific measure of the
strength of the relationships.

The Interaction Matrix is also used to generate a
Connectivity Matrix. From matrix M we generate a
binary matrix C where a 1 is placed as an entry cij if
and only if mi,j is greater than a specific threshold t
(i.e., 0.25). The Connectivity Matrix extracted by the
Interaction Matrix in Figure 2 is showed in Figure 3.
The idea behind this is that we have an “interaction”
threshold above which we say that two people are in-
teracting as they have a strong relationship. The In-

C =

266666666666664

1 1 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 1 0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1

377777777777775

Figure 3: Example of a Connectivity Matrix repre-
senting a simple social network.

teraction Matrix (and, consequently, the Connectivity
Matrix) can be derived by available data (for example,
from a sociological investigation) or using mathemat-
ical models that are able to reproduce characteristics
of real social networks. As we will discuss in Sec-
tion III.B.1, the default implementation of our model
uses the so-called Caveman model [26] for the gener-
ation of synthetic social networks with realistic char-
acteristics (i.e, high clustering and low average path
length). However, this is a customisable aspect and, if
there are insights on the type of scenario to be tested,
a user-defined matrix can be inputted.

II.A.2. Detection of Community Struc-
tures

The simulation scenario is established by mapping
groups of hosts to certain areas in geographical space.
After the definition of the social graph described
above, groups, i.e., the highly connected set of nodes
in the graph, need to be isolated. Fortunately, some
algorithms can be exploited for this purpose.

We use the algorithm proposed by Newman and
Girvan in [20] to detect the presence of community
structures in social networks represented by matri-
ces, like the Connectivity Matrix that we have defined
in the previous section. This algorithm is based on
the calculation of the so-called betweenness of edges.
This provides a measure of the centrality of nodes. For
example, considering two communities connected by

few inter-community edges, all the paths through the
nodes in one community to nodes in the other must
traverse one of these edges, that, therefore, will be
characterised by a high betweenness. Intuitively then,
one of the possible estimation of the centrality of an
edge is given by the number of shortest (geodesic)
paths between all pairs of vertices that run along it.
In other words, the average distance between the ver-
tices of the network has the maximum increase when
the nodes with the highest betweenness are removed.

Therefore, in order to extract the communities from
the network, nodes characterised by high values of
centrality are progressively detected in subsequent
rounds. At each round, one of the edges of the host
with the highest centrality is removed. The final re-
sult is a network composed of groups of hosts (i.e.,
the communities).

The algorithm can be run a number of times on the
graph, severing more and more links and generating
a number of distinguishable communities. However,
we also need a mechanism to stop the algorithm when
further cuts would decrease the quality of the results:
this would mean that we have reached a state when we
have meaningful communities already. We adopted a
solution based on the calculation of an indicator de-
fined as modularity Q [20]. This quantity measures
the proportion of the edges in the network that con-
nect vertices within the same community minus the
expected value of the same quantity in a network with
the same community division but random connections
between the vertices. If the number of edges within
the same community is no better than random, the
value of Q is equal to 0. The maximum value of Q
is 1; such a value indicates very strong community
structure. In real social networks, the value of Q is
usually in the range [0.3, 0.7]. The analytical defini-
tion of the modularity of a network division can be
found in [20]. At each run the algorithm severs one
edge and measures the value of Q. The algorithm ter-
minates when the obtained value of Q is less than the
one obtained in the previous edge removal round.

In order to illustrate this process, let us now con-
sider the social network in Figure 1. Three commu-
nities (that can be represented by sets of hosts) are
detected by running the algorithm: C1 = {A,B, C},
C2 = {D,E, F, G} and C3 = {H, I, L}. Now that
the communities are identified given the matrix, there
is a need to associate them with a location.
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II.B. Establishment of the Model: Place-
ment of the Communities in the
Simulation Space

After the communities are identified, each of them
is randomly associated to a specific location (i.e., a
square) on a grid3. We use the symbol Sp,q to indi-
cate a square in position p, q. The number of rows and
columns are inputs of the mobility model.

Going back to the example, in Figure 4 we show
how the communities we have identified can be placed
on a 3x4 grid (the dimension of the grid is config-
urable by the user and influences the density of the
nodes in each square). The three communities C1, C2,
C3 are placed respectively in the grid in the squares
Sa,2, Sc,2 and Sb,4.

Once the nodes are placed on the grid, the model
is established and the nodes move around according
to social-based attraction laws as explained in the fol-
lowing.

II.C. Dynamics of the Mobile Hosts

As described in the previous section, a host is initially
associated to a certain square in the grid. Then, in or-
der to drive movement, a goal is assigned to the host.
More formally, we say that a host i is associated to a
square Sp,q if its goal is inside Sp,q. Note that host i
is not necessarily always positioned inside the square
Sp,q, despite this association (see below).

The goal is simply a point on the grid which acts
as final destination of movement like in the Random
Way-Point model, with the exception that the selec-
tion of the goal is not as random. When the model is
initially established, the goal of each host is randomly
chosen inside the square associated to its community
(i.e, the first goals of all the hosts of the community
C1 will be chosen inside the square Sa,2).

When a goal is reached, the new goal is chosen ac-
cording to the following mechanism. A certain num-
ber of hosts (zero or more) is associated to each square
Sp,q at time t. Each square (i.e., place) exerts a certain
social attractivity for a certain host. The social at-
tractivity of a square is a measure of its importance in
terms of the social relationships for the host taken into
consideration. The social importance is calculated by

3A non random association to the particular areas of the sim-
ulation area can be devised, for example by deciding pre-defined
areas of interest corresponding for instance to real geographical
space. This aspect is orthogonal to the work discussed in this pa-
per. We also note that communities may be placed in adjacent
cells and this may have an impact on the connectivity properties
of the network. However, the probability that this would happen
decreases as the number of squares increases. The effects may be
negligible with multiple runs.

evaluating the strength of the relationships with the
hosts that are moving towards that particular square
(i.e., with the hosts that have a current goal inside that
particular square). More formally, given CSp,q (i.e.,
the set of the hosts associated to square Sp,q), we de-
fine social attractivity of that square towards the host
i SAp,qi

, as follows

SAp,qi
=

∑
j∈CSp,q

mi,j

w
(1)

where w is the cardinality of CSp,q (i.e., the num-
ber of hosts associated to the square Sp,q). In other
words, the social attractivity of a square in position
(p, q) towards a host i is defined as the sum of the
interaction indicators that represent the relationships
between i and the other hosts that belong to that par-
ticular square, normalised by the total number of hosts
associated to that square. If w = 0 (i.e., the square is
empty), the value of SAp,qi

is set to 0.
The mobility model allows for two alternative

mechanisms for the selection of the next goal that are
described in the following two subsections, a deter-
ministic one based on the selection of the square that
exerts the highest attractivity and a probabilistic one
based on probability of selection of a goal in a certain
square proportional to their attractivities.

Deterministic Selection of the Goal in the Area
with the Highest Social Attractivity According to
this mechanism, the new goal is randomly chosen in-
side the square characterised by the highest social at-
tractivity; it may be again inside the same square or in
a different one. New goals are chosen inside the same
area when the input social network is composed by
loosely connected communities (in this case, hosts as-
sociated with different communities have, in average,
weak relationships between each others). On the other
hand, a host may be attracted to a different square,
when it has strong relationships with both communi-
ties. From a graph theory point of view, this means
that the host is located between two (or more) clusters
of nodes in the social network4.

Let us suppose, for example, that host A has
reached its first goal inside the square Sa,2. The new
goal is chosen by calculating the social attractivities
of all the squares that compose the simulation space
and then by choosing the highest. If, say, square Sc,2

exerts the highest attractivity (for example, because a

4This is usually the case of hosts characterised by a relatively
high betweenness that, by definition, are located between two (or
more) communities.
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Figure 4: Example of initial simulation configuration.

host with strong relationship with node A has joined
that community), the new goal will then be selected
inside that square.

Probabilistic Selection of the Goal Proportional to
the Social Attractivity An alternative mechanism
is based on a selection of the next goal proportional to
the attractivity of each square. In other words, we as-
sign a probability P (s = Sp,qi

) of selecting the square
Sp,qi

as follows:

P (s = Sp,qi
) =

SAp,qi
+ d∑p×q

j=1(SAp,qj
+ d)

(2)

where d is a random value greater than 1 in order
to ensure that the probability of selecting a goal in a
square is always different from 05.

The parameter d can be used to increase the ran-
domness of the model in the process of the selection
of the new goal. This may be exploited to increase the
realism of the generated scenario, since in real situ-
ations, humans also move to areas without people or
for reasons not related to their social sphere.

II.D. Social Network Reconfigurations
and their Effects on the Dynamics
of Mobile Hosts

Like in everyone’s life, the day movement are gov-
erned by different patterns of mobility which depend
on the people we need to interact with. For example,
most people spend a part of their day at work, inter-
acting with colleagues, and another part at home with
their families. In order to model this, we allow the as-
sociation of different social networks to different pe-
riods of a simulation.

5d has a role similar to the damping factor used in the cal-
culation of the PageRank [3]. In fact, the transitions between
squares can also be represented using a Markov Chain model
with P (s = Sp,qi

) as probability of transitions between states
(squares).

Periodically, the social networks at the basis of the
mobility model can be changed. The interval of time
between changes is an input of the model. When the
reconfiguration of the underlying social network hap-
pens, nodes are assigned to the new communities that
are detected in the network using the algorithms de-
scribed in Section II.A.2. Communities are then ran-
domly associated to squares in the simulation space.
This assignment does not imply immediate relocation
of the nodes, instead, it conditions the choice of the
next goal. In fact, goals are chosen inside the square
of the grid to which the community they belong to
is assigned. So hosts will move towards their des-
tination gradually. The nodes start moving towards
the geographical region where other nodes that have
strong interactions with them will converge. This mir-
rors the behaviour, for instance, of commuters who
travel home every evening to join their families.

III. Implementation and Evaluation

In order to evaluate our model we have performed a
number of tests, in particular, we have taken real mo-
bility traces collected by Intel Research Laboratory
in Cambridge. We have then tested our model using
realistic social networks and compared the mobility
patterns with the Intel traces. In this section, we will
present and discuss the results of our simulations com-
paring them with these data from real scenarios.

III.A. Implementation of the Model

We implemented a movement patterns generator that
produce primarily traces for the ns-2 simulator [16],
one of the most popular in the ad hoc network
research community. However, the generator is
also able to produce traces in a XML meta-format
that can be parsed and transformed into other for-
mats (for example, by using XSLT) such as the
one used by GlomoSim/Qualnet [27]. The model
is available for downloading at the following URL:
http://ww.cs.ucl.ac.uk/staff/m.musolesi/mobilitymodels.

III.B. Validation of the Model using Real
Movement Traces

In this section, we present a comparison of the prop-
erties of the movement patterns generated by our mo-
bility model with those of the real traces provided by
Intel Research Laboratory in Cambridge. The descrip-
tion of these measurement exercise is presented in [5].
In that paper, the authors also compare their results
with other publicly available data sets provided by
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Figure 5: Generation of the social network in input us-
ing the Caveman model: (a) initial configuration with
3 disconnected ‘caves’. (b) generated social network
after the rewiring process.

McNett and Voelker from University of California at
San Diego [17] and by Henderson et alii from Dart-
mouth College [7] showing evident similarities be-
tween the patterns movements collected by the three
different groups. For this reason, we decided to com-
pare the traces obtained by using our mobility model
only with the data provided by the researchers in Cam-
bridge.

III.B.1. Description of the Simulation

We tested our mobility model using several runs gen-
erating different mobile scenarios and we compared
the results with the real movement patterns provided
by Intel and synthetic traces generated using a Ran-
dom Way-Point model.

We tested our model considering a scenario com-
posed of 100 hosts in a simulation area of 5 km ×
5 km, divided into a grid composed of 625 squares of
200 m (i.e., the numbers of rows and columns of the
grid were set to 25). We chose a relatively large sim-
ulation scenario, with a low population density, in or-
der to better see the differences in the results obtained
with a Random Way-Point model. In fact, in small
simulation areas, the limited possible movements and
the higher probability of having two nodes in the same
transmission range may affect the simulation results
introducing side-effects that are not entirely due to the
mobility model.

We also assumed that each device is equipped with
an omnidirectional antenna with a transmission range
of 250 m, modeled using a free space propagation
model. The speeds of the nodes were randomly gen-
erated according to a uniform distribution in the range
[1−6] m/s. The duration of the simulation is one day
and the reconfiguration interval is equal to 8 hours.
These values have not been chosen to reproduce the
movements described by the traces provided by Intel,
rather, we were more interested in observing if sim-
ilar patterns could be detected in synthetic and real
traces. In other words, our goal has mainly been to

verify whether the movement patterns observed in In-
tel traces were reproduced by our mobility model.

A key aspect of the initialisation of our model is the
selection of the social network in input. We imple-
mented a generator of synthetic social networks using
the so-called Caveman Model proposed by Watts [26].
The social network is built starting from K fully con-
nected graphs (representing communities living in iso-
lation, like primitive men in caves). According to this
model, every edge of the initial network in input is
re-wired to point to a node of another cave with a cer-
tain probability p. The re-wiring process is used to
represent random interconnections between the com-
munities. Figure 5.a shows an initial network con-
figuration composed by 3 disconnected communities
(caves) composed by 5 individuals; a possible social
network after random rewiring is represented in Fig-
ure 5.b.

Individuals of one cave are closely connected,
whereas populations belonging to different caves are
sparsely connected. Therefore, the social networks
generated using this model are characterised by a high
clustering coefficient and low average path length. It
has been proved that this model is able to reproduce
social structures very close to real ones [26]. We gen-
erated social networks with different rewiring prob-
abilities, also considering the case of disconnected
communities (i.e., p = 0).

We also implemented a movement patterns genera-
tor based on the Random Way-Point model. We gen-
erated traces with the same simulation scenarios in
terms of size of the area and characteristics of the mo-
bile devices, with hosts that move with a speed uni-
formly distributed in the range [1 − 6] m/s and stop
time equal to [1− 10] s. We repeated the experiments
using a number of runs sufficient to achieve a 90%
confidence interval.

III.B.2. Simulation Results

The emergent structure of the network derived by
analysing the Intel traces is typically exponential [1];
in fact, the degree of connectivity shows a local peak
near the average. Our mobility model (indicated with
CM) produces a similar type of distribution as shown
in Figure 6. The peak shifts to the right as the den-
sity of the squares increases. We analysed two further
properties of the movement patterns, the contact du-
ration and the inter-contacts time. We adopt the same
definitions used by the authors of [5] in order to be
able compare the results. We define contact duration
as the time interval in which two devices are in radio
range. We define inter-contacts time as the time inter-
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Figure 6: Distribution of the degree of connectivity.

val between two contacts. These indicators are partic-
ularly important in ad hoc networking and, in partic-
ular, in opportunistic mobile networks, such as delay
tolerant mobile ad hoc networks [18]: inter-contacts
times define the frequency and the probability of be-
ing in contact with the recipient of a packet or a po-
tential carrier in a given time period.

Figure 7 shows the comparison between the inter-
contacts time and the contact duration cumulative dis-
tributions using log-log coordinates. These distribu-
tions are extracted from the real and synthetic traces
generated by the Random Way-Point (indicated with
RWP) and our Community based mobility model with
different rewiring probabilities p.

With respect to the inter-contacts time, our traces
(excluding the case with p = 0 that we will dis-
cuss separately) shows an approximate power law be-
haviour for a large range of values like those extracted
from Intel data. A similar pattern can be observed
in UCSD and Dartmouth traces [5]. The cumulative
distribution related to Random Way-Point, instead,
shows a typical exponential distribution. The same
behaviour can be observed for the traces generated
using our Community based mobility model with a
probability of rewiring equal to 0 (i.e., the communi-
ties are completely disjointed also in terms of recipro-
cal movement influence). In fact, in this case, the only
movements of the hosts outside the assigned square
happen when a reconfiguration takes place (i.e., a new
generation of the social networks takes place and a
consequent new assignment to different squares in
the grid are performed). However, the case of dis-
connected and isolated communities is not so realis-
tic. As far as the contacts time distribution is con-
cerned, we observe a power law behaviour for a much
more limited range of values and, in general, with a
lower angular coefficient of the interpolating line. The

traces from Dartmouth College and UCSD also show
a power law distribution with different angular coeffi-
cients [5]. It seems that data related to different sce-
narios are characterised by different types of power
law distribution.

By plotting the same distributions using semi-log
coordinates (see Figure 8), the differences between
the curves corresponding to real traces and those gen-
erated using the Random Way-Point mobility model
are even more evident. The exponential nature of the
cumulative distribution of the inter-contacts time6 ex-
tracted by the latter is clearly reflected by the approx-
imated straight line that is shown in the figure.

Figure 9.a and 9.b show the influence of the speed
respectively on the cumulative distributions of the
inter-contacts time and contacts duration. We simu-
lated scenarios with host speed uniformly distributed
in the range [1 − 6], [1 − 10] and [1 − 20]m/s. The
cumulative distributions related to all these scenarios
can be approximated with a power law function for a
wide range of values.

In many of our experiments, the coefficient of the
power law of the distribution of the Intel traces is dif-
ferent from those related to synthetic traces generated
using our model. Different coefficients can be ob-
served in the available sets of real traces. In a sense,
it seems that the values of these coefficients charac-
terise the various mobile settings. It is worth noting
that currently there are not available theoretical mod-
els that justify the emergence of these distributions.

The impact of the density of the population in the
simulation scenario is presented in Figure 10. We sim-
ulated scenarios composed of 100, 200, 300 nodes
with a starting number of groups for the Caveman
model, respectively equal to 10, 20, 30, and a rewiring
probability of 0.2. Also in these scenarios, the inter-
contacts time and contacts duration distributions fol-
low a similar pattern. As discussed previously, our
aim was not to exactly reproduce the traces provided
by Intel. However, quite interestingly, we observe that
the inter-contacts time distribution lie in between the
curves representing the scenario composed of 100 and
200 nodes. The number of nodes recorded in the In-
tel experiments was in fact 140. Instead, the con-
tacts duration distribution is bounded by the curves
extracted by these two synthetic traces for a smaller
range of values. Finally, in Figure 11 we consider a
scenario composed of 100 hosts connected by a social
network generated using different initial numbers of
groups (i.e., caves) as input for the Caveman model

6This behaviour has been theoretically studied and predicted
by Sharma and Mazumdar in [24].
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(with a re-wiring probability equal to 0.1). By vary-
ing the number of groups, the density of the squares
of the grid changes. The power law patterns can be
observed in all the scenarios, also with a large number
of small initial groups.

III.C. Influence of the Mobility Model on
Routing Protocols Performance

III.C.1. Simulation Description

In order to be able to compare routing protocol per-
formance with existing results, we tested the commu-
nity model in case of dense networks. Using ns-2,
we simulated a scenario composed of 50 hosts and we
compared the performance in terms of delivery ratio
of the AODV [22] and DSR [13] protocols. We used
a 1000m × 1000m simulation area with a maximum
node transmission range equal to 250m. We chose
the two-ray pathloss model as propagation model and
at the MAC layer, the IEEE 802.11 DCF protocol was
used with a bandwidth equal to 2 Mbps. We started 10

sessions between randomly chosen hosts using CBR
traffic with data packet size and sending rate respec-
tively equal to 512 bytes and 4 packets/second. The
simulation time was equal to 2 hours.

We studied the influence of the speed on the per-
formance comparing the results obtained by using the
Random Way-Point model and the Community based
mobility model presented in this paper. Every node
in the simulation is moving at the same speed. With
respect to the Random Way-Point model, the stopping
times are chosen randomly in the interval [1−10]m/s.
As far as our mobility model is concerned, the recon-
figuration interval was set to 1 hour. The social net-
work in input was generated with the Caveman model
with 5 groups of 10 individuals and a re-wiring prob-
ability equal to 0.1. The simulation scenario was di-
vided into a 5 × 5 grid. We performed a number of
runs sufficient to achieve a 90% confidence interval.
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III.C.2. Simulation Results

Using the Random Way-Point mobility model, as ex-
pected and confirming the results obtained by the au-
thors of these protocols [22, 13], the delivery ratio de-
creases as the speed increases (Figure 12). Instead,
using our model, the decreasing trend of the deliv-
ery ratio is less evident, since the emerging structure
is composed of groups of hosts moving in limited ar-
eas (i.e., the square of the grids) that are ‘bridged’ by
hosts roaming among them. In other words, the move-
ment of most of the hosts is constrained in geograph-
ical terms so topology changes are less frequent than
in the case of a pure random model. The difference in
terms of performance using the two mobility models
is more evident for the DSR protocol. In case of fixed
hosts (i.e., with a speed equal to 0), the delivery ratio
that we obtained using our mobility model is lower
than in the scenarios with a speed greater than 0, since
in the former case, there may be disconnected com-
munities, whereas in the latter, hosts move between
communities, providing a link between them.

IV. Related Work

Many mobility models have been presented with the
aim of allowing scalability testing of protocols and al-
gorithms for mobile ad hoc networking. A compre-
hensive review of the most popular mobility models
used by the mobile ad hoc research community can
be found in [4]. However, it is interesting and, at the
same time, surprising to note that even the best so-
lutions and approaches have only been tested using
completely random models such as the Random Way-
Point model, without grouping mechanisms.

A more refined approach consists in the defini-
tion of group mobility models, based on coordinated
movements of predefined set of nodes (see, for exam-
ple, [9]). These models still had a large random com-
ponent in the way groups were created and moved.
Our model is not a group mobility model at least in
the traditional sense, i.e. the nodes are not moving
together (for example, around a moving center like
in [9]). Group mobility models are based on static
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Figure 12: Influence of the mobility model on the protocol performance: (a) AODV; (b) DSR.

grouping of the nodes; we believe that this is not the
case for our mobility model.

The work most directly related to ours can be found
in [8]. This model is predicated upon similar as-
sumptions, but is considerably more limited in scope.
In that model hosts are statically assigned to a par-
ticular group during the initial configuration process,
whereas our model accounts for movement between
groups. Moreover, the authors claim that mobile ad
hoc networks are scale-free, but the typical properties
of scale-free networks are not exploited in the design
of the model presented by the authors. With respect to
this work, we allow the setting of the initial social net-
work, which conditions the movement patterns, this
enables different kinds of networks to emerge, includ-
ing small world and scale free.

In recent years, many researchers have tried to re-
fine existing models in order to make them more re-
alistic. In [12], a technique for the creation of a mo-
bility models that include the presence of obstacles is
presented. The specification of obstacles is based on
the use of Voronoi graphs in order to derive the possi-

ble pathways in the simulation space. This approach
is orthogonal to ours; this would be an interesting ex-
tension of the model as discussed in the next section.

Tuduce and Gross in [25] present a mobility model
based on real data from the campus wireless LAN
at ETH in Zurich. They use a simulation area di-
vided into squares and derive the probability of transi-
tions between adjacent squares from the data of the
access points. Also in this case, the session dura-
tion data follow a power law distribution. This ap-
proach can be a refined version of the Weighted Way-
Point mobility model [10], based on the probability
of moving between different areas of a campus us-
ing a Markov model. Moreover, Tuduce and Gross’
model represents the movements of the devices in an
infrastructure-based network and not ad hoc settings.
In [15], the authors try to reproduce the movements
of pedestrians in downtown Osaka by analysing the
characteristics of the crowd in subsequent instants of
time using an empirical methodology. In general, the
main goal of these works is to try to reproduce the spe-
cific scenarios with a high degree of accuracy. We fo-
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cus, instead, on the cause of these movements, trying
to capture the social dimensions that lead to general
emergent human movement patterns.

V. Conclusions

We have presented a new mobility model based on
social network theory and predicated on the assump-
tion that mobility patterns are driven by the fact that
devices are carried by humans and that the move-
ments are strongly affected by the relationships be-
tween them.

We have described the design of the mobility
model, its implementation and an evaluation based
on the comparison between our approach, existing
random mobility models and real movement traces.
We have shown that our mobility model generates
traces that present characteristics similar to real ones,
in terms of inter-contacts time and contacts duration.
Finally, we have also compared the performance in
terms of delivery ratio of the AODV and DSR pro-
tocols using the Random Way-Point model and our
Community based model.
Acknowledgements: we would like to thank the sup-
port of the EPSRC Research Council through project
CREAM and the European Project RUNES.
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