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Abstract

The vast majority of mobile ad hoc networking research makes
a very large assumption: that communication can only take
place between nodes that are simultaneously accessible within
in the same connected cloud (i.e., that communication issyn-
chronous). In reality, this assumption is likely to be a poor
one, particularly for sparsely or irregularly populated environ-
ments. Moreover, asynchronous communication such as email,
which is by far the pre-eminent form of networked person-
to-person communication, has a natural fit to such partially-
connected environments, but has been relatively little explored
in the context of mobile ad-hoc networking. This is perhaps
unsurprising, given the complexities involved. Indeed, the few
approaches that have been described to date are simplistic and
heavyweight, relying on brute force methods in order to achieve
message delivery.

In this paper, we present the Context-Aware Routing (CAR)
algorithm. CAR is a novel approach to the provision of asyn-
chronous communication in partially-connected mobile ad hoc
networks, based on the intelligent placement of messages. We
discuss the details of the algorithm, and then present simula-
tion results demonstrating that it is possible for nodes to exploit
context information in making local decisions that lead to good
delivery ratios and latencies with small overheads.

1 Introduction

Since the earliest days of email, asynchronous communication1

has been the pre-eminent form of person-to-person communi-
cation; in comparison, relatively little Internet traffic is gen-
erated for synchronous personal communication, though the
balance is expected to shift a little with the increasing deploy-
ment of VoIP. The reasons for the success of the asynchronous
paradigm are clear: asynchronous communication works even

1It is unfortunate that the phrase ”asynchronous communication” has sev-
eral interpretations, depending on the research area being discussed. In the
remainder of this paper we use the termsynchronousto indicate that commu-
nication requires the simultaneous mutual accessibility of two nodes within
the same connected cloud of hosts, and asynchronous to indicate that it does
not. Thus, audio conferencing necessarily involves synchronous communica-
tion whereas email is an asynchronous application that might, from time to
time, be synchronous if both parties are connected. The point is that it may not
be.

when both parties are not simultaneously available; it is less in-
trusive than synchronous communication, since recipients can
deal with messages at their convenience; and (most importantly
for us) it is less sensitive to link failure than synchronous traffic,
simply because the traffic is deemed to have a higher tolerance
to delay.

Ad hoc networks represent the purest form of decentralised
system and, therefore, the most challenging environments for
which to create cooperative communicating systems. As a con-
sequence, much ad hoc network research has focused on the
investigation of fundamental algorithms for routing [16] on
which most everything else relies. However, in order to make
the problem tractable, almost all research on routing algorithms
makes the oversimplistic assumption that it is only meaningful
to attempt to exchange messages within connected clouds of
nodes, in other words, that all communication is synchronous
in nature.

This assumption is overly constrained if one considers that
there is a strong requirement for communication that is asyn-
chronous in nature, as argued above. In such a case, the delay
tolerant character of the traffic allows the possibility that use-
ful communication can still occur if messages are transported
between disconnected clouds by using nodes moving between
those clouds to carry messages from one to another. Thus, it is
perfectly possible that two nodes mayneverbe part of the same
connected cloud and yet may still be able to exchange delay tol-
erant information by making use of predicted mobility patterns
as an indicator of which other nodes might make good carriers.

Whilst, in the developed world, synchronous communication
(in the form of phone and Internet) is generally cheap and easy
to come by, there are several real scenarios in less developed
parts of the world in which different portions of a logical net-
work are physically disconnected. Thus, for example, this is the
case in recent projects established to assist nomadic communi-
ties such as the Saamis in Lapland [9] or to assist populations in
rural areas of India [22]. In the latter case, a number of villages
each have their own local networking infrastructure, but there is
no interconnection between them. A bus containing a wireless
node travels between villages, picking up email in one and de-
positing it in others on its round. Self-evidently, although there
is never a direct connection between sender and recipient, mail
can still be delivered.

In the absence of special information, the problem of predict-
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ing which nodes might make good carriers in ad hoc networks
is a very challenging one. Likely future mobility patterns must
be inferred from past mobility patterns, but this alone is inad-
equate; parameters such as remaining battery lifetime are also
key in determining which potential carriers are most likely to
result in successful delivery. In this paper, we consider what
types of information are available to nodes in deciding on a
carrier. We use this analysis in the design of a Context-aware
Adaptive Routing algorithm (CAR), a general framework for
the evaluation and prediction of context information, aimed at
achieving efficient and timely delivery of messages. Using sim-
ulations, we explore the performance of the CAR algorithm
with respect to epidemic routing [23] and flooding. In this,
unlike in previous work in the field [23], we assume that the
movement of nodes is not individually random. This assump-
tion means that information about the type of movement that a
node exhibits is capable of being extracted from its measured
movement patterns and, thus, intelligence can indeed be ap-
plied to message placement to ensure timely delivery with low
overhead.

This paper is organized as follows: in Section 2 we discuss
the most relevant aspects of asynchronous routing for mobile
ad-hoc networks. Section 3 presents our approach. The details
related to the evaluation of context information are discussed
in Section 4. The description of the simulations carried out to
evaluate CAR is provided in Section 5, together with an analy-
sis of the results. In Section 6 we compare CAR with previous
work in this area and Section 7 concludes the paper, outlining
possible future research directions.

2 Asynchronous communication in mo-
bile ad hoc networks

Synchronous protocols rely on the fact that a connected path
exists between the sender and the receiver of a message; the
absence of such a path will, at best, lead to a failure indica-
tion to the originating host. If delivery is important, the best
that can be done is for the sender to continue to poll for the
receiver. However, as in the example of the bus delivering mes-
sages, it may be the case that sender and receiver are never in
the same connected cloud, so this polling is not equivalent to
true asynchronous communication.

Only a small number of approaches have been proposed
in the field of asynchronous communication for ad hoc net-
works [23, 6]. As described above, the challenge in produc-
ing an algorithm for delivering asynchronous messages derives
from the deceptively simple question of determining the best
carrier or carriers for each message. Clearly, leaving the mes-
sage with the sender is inappropriate, since sender and receiver
may never meet. An alternative, if inefficient, solution is to
spread the messages to all hosts using a form of persistent
flooding. In this approach, which is more properly known as
epidemic routing[23], a host floods the message it wishes to
send to all hosts within its connected cloud. Each carrier host
buffers the message and if, as a result of movement, they come

into contact with hosts that do not have a copy, they transfer it
to them, making them new carriers, in an analogous was to the
spread of disease. Eventually, the message will reach all nodes
in the system, provided that movement patterns allow for this.

Epidemic routing is a reasonable approach when there is no
information about the likely movement patterns of nodes in the
system. In other words, when there is no basis on which to
distinguish the movement pattern of any node from another,
and the movement pattern of each node is individually random,
the only choice about message placement is to place messages
randomly or to place them everywhere, since there is no more
intelligent basis for making a decision.

The aim of CAR is to allow nodes to make intelligent lo-
cal decisions about the choice of carriers for messages. These
decisions are based on small amounts of information that are
exchanged along with standard routing tables, and they are ef-
fected by using prediction techniques both to reduce the amount
of information needs to be sent and to increase its utility. In
the immediately following sections, we analyse the information
gathering, prediction and exchange mechanisms before pro-
ceeding to an analysis of the performance of CAR.

3 Context-aware probabilistic routing
for mobile ad hoc networks

The CAR algorithm is built on the assumption that the only
information a host has about its position is logical connectivity
information. In particular, we assume that a host is not aware of
its absolute geographical location nor of the location of those to
whom it might deliver the message. Although this information
could potentially be useful, and, indeed, we plan to examine
its utility in the near future, it is currently unreasonable to as-
sume the existence of GPS for all potential application domains
for this technology. Another basic assumption is that the hosts
present in the system cooperate to deliver the message. In other
words, we do not consider the case of hosts that may refuse to
deliver a message or that act in a Byzantine manner.

The delivery process depends on whether or not the recipient
is present in the same cloud as the sender. If both are currently
in the same connected portion of the network, the message is
delivered directly, using the underlying routing protocol to de-
termine a forwarding path. In the remainder of this paper we
assume that a proactive routing protocol is used (in our simu-
lations we employed DSDV [17]). Reactive protocols require
different approaches to optimisation that would simply confuse
the presentation and so are deemed to be outside the scope of
this particular work.

If a message cannot be delivered synchronously2, the best
carriers for a message are those that have the highest chance
of successful delivery, i.e., the highestdelivery probabilities.
The message is sent to one or more of these hosts using the

2It is worth noting that the recipient may be in the same cloud but not reach-
able using synchronous routing, since the routing information is not available
(for example because the space in the routing tables is not sufficient to store
the information related to all the hosts in the cloud or because the node has just
joined the cloud). In these cases we exploit the asynchronous mechanisms.
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underlying synchronous mechanism. Delivery probabilities are
synthesized locally from context information such as the rate of
change of connectivity of a host (i.e., the likelihood of it meet-
ing other hosts) and its current energy level (i.e., the likelihood
of it remaining alive to deliver the message). We definecontext
as the set of attributes that describe the aspects of the system
that can be used to optimize the process of message delivery.

Since we assume a proactive routing protocol, every host pe-
riodically sends both the information related to the underlying
synchronous routing (in DSDV this is the routing tables with
distances, next hop host identifier, etc.), and a list containing
its delivery probabilities to the other hosts. When a host re-
ceives this information, it updates its routing tables. Mainte-
nance of the routing table for synchronous routing simply fol-
lows the specification of the algorithm. With respect to the table
for asynchronous routing, each host maintains a list of entries,
each of which is a tuple that includes the fields (destination,
bestHost, deliveryProbability). In this paper, we choose to ex-
plore the worst-case scenario, in which each message is placed
with only a single carrier rather than with a set, with the conse-
quence that there is only a single list entry for each destination.

When a host receives a message for onward delivery, it in-
serts it into a buffer. The size of this buffer is important, and
represents a trade-off between storage overhead and likely per-
formance. In the latter case, if the buffer overflows, messages
will be completely lost from the system, since we assume the
existence of only a single replica.

In order to understand the operation of the CAR routing al-
gorithm, consider the following scenario in which two clusters
of nodes are connected as in Figure 1. HostH1 wishes to send
a message toH8. This cannot be done synchronously, because
there is no connected path between the two. Suppose the deliv-
ery probabilities forH8 are as shown in Figure 1. In this case,
the host possessing the best delivery probability to hostH8 is
H4. Consequently, the message is sent directly toH4, which
stores it. After a certain period of time,H4 moves to the other
cloud (as in Figure 2). Since a connected path betweenH4 and
H8 now exists, the message is delivered to its intended recip-
ient. Using DSDV, for example, it is worth noting thatH4 is
able to send the message shortly after joining the cloud, since
this is when it will receive the routing information relating to
H8.

What we have described is the basic model behind the CAR
algorithm. In the following sections we will describe the details
of the algorithms and techniques exploited for the calculation
of the delivery probabilities.
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Figure 1: Two connected clouds, with associated delivery probabilities
for message transmission betweenH1 andH8
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Figure 2:H4, carrying the message, joins the second cloud.

4 Prediction and evaluation of context
information

The general problem from the point of view of the sender of a
message is to find the host with the best delivery probability,
as calculated using the predicted values of a range of context
attributes. Instead of using the available context information as
it is, CAR is optimized by usingpredictedfuture values for the
context, so to have a more realistic value of the context. The
process of prediction and evaluation of the context information
can be summarized as follows.

• Each host calculates its delivery probabilities. This pro-
cess is based on theprediction of the future values of
the attributes describing the context (see Section 4.2) and
on thecompositionof these estimated values using multi-
attribute utility theory [12] (see Section 4.1). The cal-
culated delivery probabilities are periodically sent to the
other hosts in the connected cloud as part of the update of
routing information.

• Each host maintains a logical forwarding table of tuples
describing the next logical hop, and its associated delivery
probability, for all known destinations.

• Each host uses local prediction of delivery probabilities
between updates of information. The prediction process is
used during temporary disconnections and it is carried out
until it is possible to guarantee a certain accuracy. Mor-
ever, in the case of hosts within reach, the interval be-
tween update shipment is based on the evaluation of the
accuracy of others’ prediction. In other words, hosts send
updates only when the predictions others will make about
their state become inaccurate. This is done by evaluating
the current trend of the sampled values of context infor-
mation.

In the remainder of this section, we will analyze more closely
how delivery probability information is predicted, spread in the
system, maintained, and evaluated.

4.1 Local evaluation of context information

There are several techniques that can be used to combine and
evaluate the multiple dimensions of context in order to decide
which nodes are the best candidates as carriers of a particu-
lar message. The simplest is to allow application developers
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to define a static hierarchy among the predicted context at-
tributes [18].

A possible alternative to this method is to use goal program-
ming, exploiting the so-calledpreemptive methodology. With
respect to a single attribute, our goal is to maximize its value.
The optimization process is based on the evaluation of one goal
at a time such that the optimum value of a higher priority goal
is never degraded by a lower priority goal [21]. However, in
general, the definition of static priorities is inflexible. For more
realistic situations, we expect to need to attempt simultaneous
maximization of a range of different attributes, as opposed to
using a predefined hierarchy of priorities.

4.1.1 Significance-based evaluation of context-aware in-
formation

The priority based technique just mentioned seems too simplis-
tic because, in general, our decision problem involves multiple
conflicting objectives [12]. For example, if we wish to deter-
mine which host has the best delivery probability, considering
both the battery energy level and the rate of change of connec-
tivity, it may happen that the host characterized by the highest
mobility has scarce residual battery energy and vice versa. In
general, maximization across all parameters will not be pos-
sible and, instead, we must trade off the achievement of one
objective (i.e., the maximization of a single attribute) against
others.

The context information related to a certain host can be
defined using a set of attributes(X1, X2, ..., Xn). Those
attributes denoted with a capital letter (e.g.,X1) refer to the set
of all possible values for the attribute, whereas those denoted
with a lower case letter (e.g.,x1) refer to a particular value
within this set. In the remainder of this section we will use the
classical notation of utility theory. Our goal is to allow each
host locally to associate a utility functionU(x1, x2, ..., xn),
representing the delivery probability, with every other host.
We use the following definitions:

Definition 1 Given a set of attributesX1, X2, ..., Xn parti-
tioned into two complementary setsY = (X1, X2, ..., Xs) and
Z = (Xs+1, Xs+2, ..., Xn), we say thaty’ is conditionally pre-
ferred or indifferent toy givenz if and only if

(y’, z) � (y, z)

Definition 2 The set of attributesY is preferentially indepen-
dent of the complementary setZ if and only if for somez’

[(y’, z’) � (y, z’)] ⇒ [(y’, z) � (y, z)],∀z, y, y’

Definition 3 The attributes X1, X2, ..., Xn are mutually
preferentially independent if every subsetY of these attributes
is preferentially independent of its complementary set of
attributes.

Given these definitions, an interesting result of the multi-
attribute decision theory is the following theorem demonstrated
by Debreu in 1960 [7].

Theorem 1 Given attributesX1, X2, ...Xn, an additive func-
tion of the following form exists if and only if the attributes are
mutually preferentially independent

U(x1, x2, ..., xn) =
n∑

i=1

Ui(xi)

whereUi is a utility function overXi.

Thus, in the case of mutually preferentially independent at-
tributes, that is to say those characterized by the same degree
of significance, the sum of the attributes is adequate as a means
of combining those attributes. However, the case of attributes
that have different relative importance is more interesting. In
this case, we use the theory of goal programming, a branch
of mathematics that has been studied since 1960 in the opera-
tion research community. More specifically, we use theweights
methodin order to find the host that has the highest probability
of delivering the message.

Our aim is to maximize each attribute, in other words, to
choose the host that presents the best trade-off between the at-
tributes representing the relevant aspects of the system for the
message delivery. Analytically, consideringn attributes, the
problem can be reformulated in terms ofn goals where each
goal is given as

Maximise{Ui(xi)}, i = 1, 2, ..., n

The combined goal function used in the Weights method can be
defined as

Maximise{f(U(xi)) =
n∑

i=1

wiUi(xi)}

wherew1, w2, ...wn aresignificance weightsreflecting the rel-
ative importance of each goal.

It is worth noting that, in our case, the solution is very simple,
since it consists of the evaluation of the functionf(U1, ..., Un)
using the values predicted for each host and in the selection of
the hosti with the maximum such value.

4.1.2 Autonomic adaptation of the utility evaluation func-
tion

As it stands, the utility function weights are fixed in advance,
reflecting the relative importance of the different context at-
tributes. However, such a formulation is still too static, since it
fails to take into account the values of the attributes. Thus, for
example, a small drop in battery voltage may be indicative of
the imminent exhaustion of the battery; consequently, it would
be useful to reduce the weight of this attribute nonlinearly to
reflect this.

In general, we wish to adapt the weights of each parame-
ter dynamicallyand in ways that are dependent on the val-
ues of those parameters. In other words, we need a runtime
self-adaptation of the weightings used for this evaluation pro-
cess that could be categorized as a typical autonomic mecha-
nism [1]. A simple solution to this problem is the introduc-
tion of adaptive weightsai into the previous formula, in order
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to modify the utility function according to the variation of the
context.

Maximise{f(U(xi)) =
n∑

i=1

ai(xi)wiUi(xi)}

ai(xi) is a parameter that may itself be composite. For our pur-
poses, we define it to have three important aspects that help to
determine its value, though the model could easily be expanded
to incorporate other aspects deemed to be of importance:

• Criticality of certain ranges of values,arangei
(xi)

• Predictability of the context information,apredictabilityi(xi)

• Availability of the context information,aavailabilityi(xi)

We now compose theai weights as factors in the following
formula:

ai(xi) = arangei
(xi) · apredictabilityi

(xi) · aavailabilityi
(xi)

Adaptive weights related to the possible ranges of values as-
sumed by the attributes We can model the adaptive weights
arange(xi) as a function whose domain is[0, 1]. For example,
with respect to the battery energy level (modeled using the per-
centage of residual battery energy), we would use a monotoni-
cally decreasing (though not necessarily linear) function to as-
sign a decreasing adaptive weight that is, in turn, used to ensure
that the corresponding utility function decreases as the residual
energy tends towards zero.

Adaptive weights related to the predictability of the context
information In general, it is possible to exploit different sta-
tistical attributes for the analysis of time series [5]. One could,
for example, use theautocorrelation functionto describe the
degree of association between values of the time series at dif-
ferent lags3. In short, this gives a measure of the predictability
of the context information. Furthermore, there are clear guide-
lines for adapting the use of the autocorrelation function for
non-stationary data with both trends and seasonal variations.

In building the autocorrelation function, we first need to con-
sider the auto-covariance of the system: given a time series
characterized by the meanµt at the timet, theauto-covariance
Cov(Xt, Xt+k) of the time series{Xt} at lagk is defined as
follows

Cov(Xt, Xt+k) ≡ E[(Xt − µt)(Xt+k − µt+k)] =

=

n−k∑
t=1

(xt − µt)(xt+k − µt+k)

n

The lag represents the time difference (in terms of the number
of samples) between the two instants being considered. The

3This is a simplification by assuming independent attributes. If this is un-
true, then one might wish to use cross correlation instead of simple autocorre-
lation here.

variance of then samples of the time series can be expressed
as follows

σ2(Xt) ≡

n∑
t=1

(xt − µt)2

n

Therefore, we use theautocorrelation coefficientρk, at lagk
defined as follows

ρk ≡
Cov(Xt, Xt+k)

V ar(Xt)

that can also be expressed as

ρk =

n−k∑
t=1

(xt − µt)(xt+k − µt+k)

n∑
t=1

(xt − µt)2

It is worth noting that is possible to prove that

0 ≤ |ρk| ≤ 1

The absolute value ofρk is exactly 1 for a perfect autocorre-
lation, whereas an autocorrelation coefficient close to zero (ei-
ther positive or negative) indicates little or no correlation be-
tween two samplesXt andXt+k. In the case of a so-called
random series, for a large numbern of samples, the value ofρk

is approximately equal to 0. We therefore determine parameter
apredictabilityi

thus:

apredictabilityi
= |ρk|

An interesting issue is the choice of the value of the lagk. It is
possible that autocorrelation signals will drift slowly over time
and, consequently, the value ofk will also need to change to
reflect this. However, we expect the underlying processes that
determine the nature of the original signal to change slowly if
at all.

Thus, in order to adapt the lag value to retain a strongly cor-
related signal, we adopt a very simple adaptive technique. At
the initial instantt0, k is set to 1. This is increased, up to a value
of kMAX , if the autocorrelation coefficient is below a given
lower bound thresholdρstrongCorrLB . The process wraps on
reachingkMAX , setting the value ofk back to unity in order to
ensure that the entire space is searched. If, on the other hand,
the autocorrelation coefficient exceeds an upper bound thresh-
old ρstrongCorrUB , k is decreased until it reaches the value 1.

We can summarize these concepts using the following update
equation for the lagk:

k(t+1) =


1 if t = t0 or k(t) = kMAX

k(t) + 1 if ρ(t) ≤ ρstrongCorrLB , k(t) < kMAX , t 6= t0
k(t)− 1 if ρ(t) > ρstrongCorrUB , k(t) ≥ 1, t 6= t0
k(t) otherwise

Adaptive weights related to the availability of the context
information It is unreasonable to assume that all context at-
tributes have the same degree of availability. Thus, we expect
to have a time-varying set of attributes available whose values
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are known or predictable. Attributes may drop out of this set if
meaningful values can no longer be predicted for them, since
the information on which the prediction would have been based
is too old. The simplest approach to this problem is to ensure
that missing context information carries an adaptive weightai

equal to 0:

aavailabilityi
=

{
1 if the context information is currently available
0 if the context information is not currently available

Formally, to date, we have implicitly assumed that a static set
of attributes will be defined. However, it is worth noting that,
using this approach, we can dynamically incorporate new at-
tribute values, simply by assuming that they were always there,
but had zero weight foraavailabilityi

.

Automatic adaptation of the refresh period of routing ta-
bles and context information In wired networks, routing ta-
ble state update is often done on an unvarying regular basis as
well as on a by-need basis. However, this approach is waste-
ful in mobile ad hoc environments. Thus, we consider how to
adapt the rate of context information dissemination by noting
that we already know that such information is predicted by re-
cipients and that such predictions are likely to be most accurate
when the signal on which they are based is most predictable.
Thus, a possible function for the determination of refresh time
is given by:

t(x1, x2, ..., xn) = c
n∑

i=1

|ρki
|

where c is a constant of proportionality.
There are several possible extensions of this model. For ex-

ample, one might wish to take account of the absolute value of
a parameter in determining update rates. Thus, for example,
as battery energy levels decline, one might wish to update in-
formation increasingly less frequently despite the consequent
unpredictability at the other end, in order to conserve remain-
ing energy. If information at the recipients becomes totally out-
dated, thenaavailabilityi

will be set to zero for all our attributes
and the result is that we will not be likely recipients of messages
to transfer, which is in line with the behavior we would expect.
Thus, we could replace the simple constant in the above equa-
tion with a generic function of values of individual attributes.
Likewise, we could obtain a more refined model associating
different weights with the autocorrelation coefficient for each
attribute in a way similar to that applied previously for com-
posing the utility functions for evaluating which host has the
best message delivery probability.

4.2 Prediction of the context information at-
tributes using Kalman filters

Kalman filter prediction techniques [11] were originally devel-
oped in automatic control systems theory. These are essentially
a method of discrete signal processing that provides optimal es-
timates of the current state of a dynamic system described by
a state vector. The state is updated using periodic observations

of the system, if available, using a set ofprediction recursive
equations.

Kalman filter theory is used in CAR both to achieve more re-
alistic prediction of the evolution of the context of a host and to
optimize the bandwidth use. As discussed above, the exchange
of context information that allows the calculation of delivery
probabilities is a potentially expensive process, and unnecessar-
ily so where such information is relatively easily predictable. If
it is possible to predict future values of the attributes describ-
ing the context, it is possible to update the delivery probabilities
stored in the routing tables, even if fresh information is unavail-
able. Fortunately, it is possible to express this prediction prob-
lem in the form of a state space model. We have a time series of
observed values that represent context information. From this it
is possible to derive a prediction model based on an inner state
that is represented by a set of vectors, and to add to this both
trend and seasonal components [2]. It is worth noting that one
of the main advantages of the Kalman filter is that it does not
require the storage of the entire past history of the system, mak-
ing it suitable for a mobile setting in which memory resources
may potentially be very limited. In view of the fact that we use
existing results, we do not present the mathematical aspects of
the application of state space models theory and Kalman filter
time series analysis in this paper; however, the interested reader
can find these in [15].

The use of prediction is complicated by the fact that the in-
formation on which it relies for its accuracy travels across net-
works. In mobile settings, bit error rates are relatively high, and
so the loss of messages is more probable than for wired settings.
If context information is exchanged only when significant, then
its loss has a greater effect. The tradeoff between loss and the
additional overhead needed for redundant transmission of con-
text is a complex study in coping with uncertainty and is outside
the scope of this paper.

5 Simulation and results

We evaluated the CAR algorithm by using the OmNet++ dis-
crete event simulator [24]. In order to obtain credible results
and to test the peculiar characteristics of our protocol, it was
also necessary for us to develop a new group mobility model,
that will be presented in Section 5.2.

5.1 Description of the simulation

5.1.1 CAR Simulation

For reasons of space and in order to allow for fair compari-
son with existing research, we report results based on simula-
tions that use only part of the full generality of the CAR algo-
rithm. Thus, we simulated the CAR model using a utility func-
tion based on the evaluation of two attributes: (i) the change
rate of connectivity and (ii) the probability of being located in
the same cloud as the destination. We made the assumption
that these factors have the same relevance, so assigned them
the same weights in the evaluation of the overall utility (i.e.,
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wi = 0.5). Moreover, we also assumed that all the possible
values in the range had the same importance (i.e,arangei

(xi)
= 1) and that the the values of attributes are always available
during the simulation (i.e.,aavailabilityi

(xi) = 1).
The change rate of connectivity attribute is locally calculated

by examining the percentage of a node’s neighbors that have
changed their connectivity status (connected to disconnected,
or vice versa) between two instants. The co-location attribute
measures the percentage of time that two hosts have been in
reach. To calculate it, we periodically run a Kalman filtering
process, assuming that the value is 1 if the host is currently in
reach or 0 if not. Clearly, the resultant predicted values will be
in the range[0, 1] and they will directly express an estimation
of the probability of being in reach of the host in the future.

We implemented a simplified version of the DSDV proto-
col [17] in order to simulate and test the synchronous delivery
in connected portions of the network, as described in Section 3.

Each host maintains arouting and context information table
used for asynchronous and synchronous (DSDV) routing. Each
entry of this table has the following structure:

(targetHostId, nextHopId, dist, bestHostId, delProb)

The first field is the recipient of the message, the second and
the third are the typical values calculated in accordance with
the DSDV specification, whereas the fourth is the identifier of
the host with the best delivery probability, the value of which is
stored in the last field. It is worth noting that all the autonomic
mechanisms, such as the variable refresh period of routing ta-
bles, described previously, were implemented.

We also simulated flooding and the epidemic protocols in
order to provide comparators for the performance of the CAR
solution.

5.1.2 Flooding simulation

We elected to compare our approach with flooding. This de-
cision may seem strange, since flooding only works in a fully
connected environment. However, since communications pat-
terns are random in the simulations, many messages will be
passed between hosts that are in connected portions of the net-
work, even when assessing the performance of the epidemic
algorithm and of the CAR algorithm. In order to see the differ-
ence in delivery rates that result from the algorithms’ ability to
handle partial connectivity, it is therefore essential to compare
against a synchronous protocol with optimum delivery ratio.

5.1.3 Epidemic routing simulation

The implementation of the epidemic protocol follows the de-
scription presented in [23]. The only assumption made by the
authors is a periodic pair-wise connectivity, since the protocol
relies on the transitive distribution of messages for delivery.
When two hosts become neighbors (in other words, they are
within each other’s radio range), they determine which mes-
sages each possesses that the other does not, using summary
vectors that index the list of messages stored at each node;
they then exchange them. Each message is characterized by a

unique message identifier and a hop count value; the latter de-
termines the maximum number of possible exchanges of a mes-
sage. Higher hop count values reduce the delivery latency, but,
at the same time, increase the quantity of resources (memory,
battery, bandwidth) consumed in this process. The epidemic
approach represents the classic example of an asynchronous
protocol and therefore provides the ideal comparator.

5.1.4 Simulation system parameters

We evaluated the performance of each protocol sending 100
messages with a simulation time equal to 300 seconds. The
messages were sent after 40 seconds, in order to allow for the
settling of initial routing table exchanges, and the intervals be-
tween each message were modeled as a Poisson process, with
λ = 5s−1, and the consequence that all messages are sent in
about 20 seconds. The sender and receiver of each message are
chosen randomly.

In the CAR simulation, each message has a field that is sim-
ilar to a time to livevalue that is decreased each time that the
message is transferred to another host (the initial value being
15). Moreover, in this case, we also introduced asplit horizon
mechanism to prevent messages from being retransmitted un-
necessarily. The buffer for each node was set to 20 messages,
unless otherwise specified. Table 1 summarizes the simulation
parameters.

The one key aspect of the simulation not yet addressed is that
of the mobility model. Clearly, the random way-point mobility
model, which is used extensively in such studies largely for rea-
sons of simplicity, does not accurately reflect human behaviour
and renders prediction useless since movement is entirely ran-
dom. Consequently, we devised a new group-based mobility
model, which will be explored in detail in a later paper. This is
presented briefly in the following section.

5.2 Mobility model

Mobility models that assume that individuals move indepen-
dently of one another in random ways are unrealistic in terms
of the deployment scenarios for ad hoc networks that are most
commonly expounded. For example, on a battlefield, it would
be indicative of a very troubled army if each soldier were to
move randomly with respect to all others. Thus, we have ex-
tended the random-way point model [3] with a form of hier-
archical clustering that better reflects the ways in which col-
lections of people are structured at an organizational level and,
consequently, the ways in which they move. This model has
been instantiated in a simple way for these experiments, and,
as used here, is somewhat akin to those in [10, 4]. Thus, we in-
troduce the concept of a collection of nodes, which has its own
motion overlaid on a form of random motion within the cloud.

By parameterizing this model differently, we can represent
different archetypes: for example, one would expect to use dif-
ferent parameters for an academic who spends her life traveling
between home and the university, interacting with a very closed
set of people, as opposed to a salesman who travels much more
extensively and interacts less discriminatingly.
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Table 1: Simulation parameters
Number of hosts 16/24/32
Simulation area 1 Km x 1 Km

Propagation model free space
Antenna type omnidirectional

Transmission range (radius) 200 m
Mobility model clustered random way point

Number of clouds 4
Cloud area 200 m x 200 m
Node speed 1-3 m/s (randomly generated)
Cloud speed 1-2 m/s (randomly generated)

Number of messages sent 100
Max number of hops 15
Message buffer size 10 to 100
Routing table size 20 entries

Max distance 15

A host that belongs to a cloud moves inside it towards a goal
(i.e, a point randomly chosen in the cloud space) using the stan-
dard random way-point model. When a host reaches a goal, it
also implicitly reaches a decision point about whether to re-
main within the cloud, and, if leaving, to where it should go.
Each of these decisions is taken by generating a random num-
ber and comparing it to a threshold (which is a parameter of
the model). It is worth noting that clouds also move towards
randomly chosen goals in the simulation space.

In the remainder of this section, we will discuss the details
of the simulation of CAR.

50% of the hosts are initially placed randomly in a cloud,
whereas the others are positioned randomly in the simulation
area. Each cloud is defined using a squared area with a side
length of 200 m. In other words, we randomly select the point
(minX,minY ) that, together with the length of the side, de-
fines the cloud area. For these simulations, there is only a single
level of cloud.

Every host is characterized by two values,Pescape, indicat-
ing the probability of escaping from the current cloud, and
PescapeCloud describing the probability of choosing a new goal
in the space between clouds.

Each cloud moves with a random speed (with a value in the
range 1-2 m/s); moreover, each host moves with a randomly
generated different speed (with a value in the range 1-3 m/s). It
is worth noting that the movement of a host is the result of the
composition of these speeds.

In our simulation, the positions of all the hosts and clouds
are updated every second. When a cloud reaches its goal,
a new goal is chosen in the simulation space. When a host
reaches its goal, a threshold probabilityPescapeThreshold is
generated randomly (its range is clearly[0, 1]). If its Pescape

is greater thanPescapeThreshold the new goal is chosen outside
the current cloud, else inside. If outside, we randomly generate
PescapeCloudThreshold and compare it toPescapeCloud to deter-
mine whether or not the goal should be chosen in some other
cloud or in the open space between clouds. For those hosts that
are already outside a cloud, the choice of a new goal is done in

an analogous way.

5.3 Analysis of results

In this subsection we will analyze the results of our simula-
tions, comparing the performance of CAR with the flooding
and epidemic protocols. We will discuss the variation of some
performance indicators as functions dependent on the density
of hosts (i.e., the number of the hosts in the simulation area)
and the size of the buffers used to store messages in both the
epidemic and CAR.

In Figure 3, there is a comparison between the delivery ratios
of the three protocols in each of three different scenarios (with
16, 24 and 32 hosts). In all cases, the number of messages that
may coexist within a node’s buffer is unconstrained.

CAR achieves a performance between that of flooding and
epidemic routing, as expected. Flooding suffers from the in-
ability to deliver messages to recipients that are in other clouds
when the messages are sent but is here simply as a comparator
to demonstrate the numbers of messages being delivered that
cannot be delivered directly, because the recipient is in a cloud
different from the cloud of the sender. The epidemic protocol
can be considered optimal in terms of delivery ratio, simply be-
cause each message is propagated to all accessible hosts, all of
which have buffers large enough to hold it. In CAR, we have
chosen to operate under the most stringent conditions: there is
only ever a single copy of each message, which represents the
worst case for this protocol. Clearly, it would be possible to
trade off a small amount of intelligent replication (to improve
the delivery ratio) against an increase in overhead.

The dependency of the delivery ratios on the buffer size is
similar for all the protocols (see in Figure 4 the results for the 32
hosts scenario). Both of these demonstrate a substantial degra-
dation of their performance as buffer size decreases; however,
this phenomenon is more evident in the epidemic approach as
a result of the degree of replication of messages.

Figure 5 is interesting because there are two competing ef-
fects at work for the epidemic protocol. When the buffer size
is small, there is a high probability that messages will be elim-
inated due to overflow, as discussed above. Consequently, the
number of messages exchanged is also low. At the other end of
the scale, as the buffer size increases to a point where it can ac-
commodate all the messages in the system, there is no repeated
exchange of messages, so the number is also low. In the mid-
dle of the range, however, the buffer size is insufficient to hold
all messages and there is a cycle in which messages are elim-
inated by buffer overflow and then reinstated by other nodes,
resulting in very high overhead. In the case of CAR, it is worth
noting that the overhead in terms of the number of messages
exchanged is more or less constant, regardless of buffer size,
demonstrating itsscalability. CAR will always be the limiting
case for performance under this metric because it only creates
a single copy of each message. Thus, even at the point where
buffer size becomes effectively infinite, the epidemic protocol
will necessarily exchange more messages than ours, simply as
a result of the replication.

Figure 6 shows the distribution of the number of messages
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with respect to their delivery latency in the 32 hosts scenario.
It is possible to observe that a proportion of the messages are
delivered more or less immediately, since the recipients are in
the same cloud as the sender. Another interesting comparison
is showed in Figure 7: the distributions of the delivery latency
in the case of different node densities are very similar.
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6 Related work

A number of approaches have been proposed to enable asyn-
chronous communication in mobile ad hoc networks.
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Epidemic algorithms were first devised in the context of dis-
tributed database systems in an attempt to guarantee data con-
sistency after disconnections [8]. Interesting theoretical results
show that, using random data exchanges, all updates are seen by
all the hosts of the system in a bounded amount of time, given
reasonable assumptions about connectivity. The epidemic rout-
ing protocol [23], described earlier, that forms the basis for
much of the work in this field, applied this early approach to
the field of asynchronous message delivery, but in a rather naive
fashion.

Chen and Murphy refined the epidemic model, present-
ing the so-called Disconnected Transitive Communication
paradigm [6]. Their approach is similar to ours, since it es-
sentially argues for the use of utility functions, but it provides
a general framework rather than a detailed instantiation, and
so aspects related to the composition of calculated delivery
probabilities are almost entirely missing.

In [14], Lindgren et al. propose a probabilistic routing ap-
proach to enable asynchronous communication among inter-
mittently connected clouds of hosts. Their approach is based
on the fact that the exploited communication model is typically
transitive and, for this reason, the probability of message deliv-
ery must be calculated accordingly: in other words, if, for ex-
ample, a hostHA is able to communicate withHB throughHC ,
the overall delivery probability is derived by the multiplication
of the probability thatHA becomes a neighbor ofHB , with
the probability thatHB becomes a neighbor ofHC . The cal-
culation of the delivery probabilities is based, somewhat sim-
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plistically, on the period of time of co-location of two hosts,
weighted by an aging factor that is used to decrease the overall
probability with the increasing age of the information on which
it was based.

In [20], Small and Haas describe a very interesting ap-
plication of epidemic routing protocols to a problem of cost-
effective data collection, using whales as message carriers.

Sasson et al., [19], studied a possible application of per-
colation theory (that studies the probability of transition be-
tween two states in fluids) to improve information dissemina-
tion based on the flooding of messages in ad hoc settings. An-
other interesting epidemic model for mobile ad hoc networks
is presented in [13]; in this paper the authors investigate the
similarities between flooding-based approaches for the infor-
mation dissemination in mobile ad-hoc networks and the epi-
demic spreading of diseases.

7 Conclusions and future work

In this paper, we presented a novel approach to the challenge of
asynchronous ad hoc routing. This is a problem that is decep-
tively easy to state but that requires the combination of results
from many fields to address efficiently. Thus, we have designed
a general and flexible framework for the evaluation of context
information using probabilistic, statistical, autonomic and pre-
dictive techniques in order to optimize the consumption of the
scarce resources of mobile devices whilst retaining good deliv-
ery performance. Previous solutions to the problem of asyn-
chronous routing are either unoptimized (as in the case of the
basic epidemic protocol) or are insufficiently specific to help in
the construction of systems capable of dealing with the multi-
dimensional nature of context (as in the Chen and Murphy’s
approach).

In order to assess our algorithm, a new mobility model, bet-
ter reflecting the realities of human organization, was devel-
oped and used in simulations that give a feel for the relative
performance of CAR relative to flooding and epidemic routing.
The results demonstrated that, even without message replica-
tion, CAR performs respectably in terms of message delivery,
with very much lower overheads than the alternatives.

In future, we will further explore the tradeoff between in-
creasing delivery ratios via replication versus maintenance of
low overhead. Moreover, we will further explore an acknowl-
edgment mechanism in order to notify the sender about the cor-
rect delivery of messages (and to remove them from intermedi-
ate nodes), exploiting the same techniques as those used to de-
liver messages. Lastly, we intend further to investigate the ap-
plication of mathematical models of social organization, most
notably small world models, in assessing performance and in
optimizing the reliability of the routing algorithm.
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